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Abstract

The representation of the data by means of a graph provides various advantages over

feature vectors, and the similarity matrix (adjacency matrix) of the graph represents

the relationship shared among the data samples. Therefore, various graph-based

learning algorithms have been proposed in the literature where the optimal similarity

matrix is determined to best represent the data samples, thus improving the learning

performances.

In the graph-based learning methods, one of the principal aims is to find the op-

timal similarity matrix. This thesis presents a few methods to find the optimal simi-

larity matrix from the graph representation of the data sets. A graph-based learning

method named Self-weighted Multi-view Multiple Kernel Learning (SMVMKL) using

multiple kernels on multiple views has been proposed to learn the optimal similarity

matrix of the data sets. Owing to its limitation before the outliers present in the

data set, an improved variant named Robust Self-weighted Multi-view Multiple Ker-

nel Learning (RSMVMKL) has been proposed. To reduce the effect of noise, another

method has been proposed which uses only the prominent features by solving a low-

rank minimization problem. This proposed method is named as Low-rank Multi-view

Multi-kernel Graph-based Clustering (LRMVMKC).

For all the proposed methods, multiple views and multiple kernels have been used

to improve the learning performances. The efficacy of all the proposed algorithms

has been supported by demonstrating their performance on the real-world benchmark

data sets.

Keywords: Similarity matrix, multiple kernels, kernel matrix, multiple views.
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Chapter 1

Introduction

A graph is a flow structure that represents the relationship among different objects. A

graph consists of two basic components: nodes and edges. Where each node represents

an object and an edge among any two nodes represents the relationship between these

two objects. When a dataset is represented in terms of nodes and edges then it is called

the graph representation of the dataset. One of the most important terminologies that

is used to describe the graph representation of a dataset is similarity matrix.

Due to the advancement of sensing and storage technologies, large volume and large

dimensional data are available nowadays and most of these data are unstructured

thus making it difficult to learn the data. But the graph representation of the data

makes them structured which is easy to analyze and learn. It is also known from the

similarity matrix of the graph that how one sample in a dataset is related to other

samples and how strong the relationship is.

Whenever a graph representation of a dataset is available, some valuable informa-

tion can be extracted (learned) from the structure of the graph. This is known as

graph-based learning. There are two types of graph-based learning:

• Graph-based Clustering: It is an unsupervised learning. Similar nodes of
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the graph are grouped in a same set known as cluster.

• Graph-based Semi-supervised Classification: It is a semi supervised learn-

ing. Given some labelled samples, it classifies the nodes of the graph into dif-

ferent classes.

While studying graph-based learning, the concept of “view” is of paramount impor-

tance. To learn from a given dataset, a set of features is extracted from the dataset.

This extracted set of features is known as view. This graph-based learning can be

performed based on only a single view or multiple views. So, the graph-based learning

can be sub-divided into two parts:

• Single view learning: Only a single set of features is extracted from a given

dataset and the learning task is performed based on this set.

• Multi-view learning: Multiple views are extracted from the given dataset

and the learning task is performed based on all the multiple set of features. It

is worth noting that a single view may contain multiple features.

1.1 Background

1.1.1 Multiple Views of Data

A single set, consisting of multiple features, of a given dataset is known as view of the

dataset. So, multiple distinct sets, each of having multiple features, are considered

as multiple views of the dataset. In content based web-image retrieval, an image can

be described from the visual feature from the image itself and also from the text that

surrounds the image. Here the visual feature sets, extracting from the image, may

be a single view and the features, derived from the surrounding text, may compose

another view. Another example, may be a video clip, which is a combination of audio

and visual frames. So, a video clip can be classified by its visual frames and also by

its audio signal. Here the features, derived from visual frame, compose a view and the
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audio signal-based features may contribute to form another, may be, complementary

view. Various examples of multiple views of different dataset are shown in Fig. 1.1.

Figure 1.1: Multi-view data: a) a web document can be represented by its URL
and words on the page, b) a web image can be depicted by an image alongwith the
surrounding text, c) images of a 3D object taken from different viewpoints, d) video
clips are combinations of audio signals and visual frames, e) multilingual documents
have one view in each language.

1.1.2 Kernel Method

In order to linearly separate the non-linearly separable dataset, kernel methods are

used. kernel methods are a class of algorithms for pattern analysis that use various

kernel functions, which enable them to operate in a high-dimensional, implicit feature

space. This bypasses the computation of the coordinates of the data, but rather by

simply computing the inner products between the all pairs of data in the sample

space. It is called the kernel trick.

Suppose there is a given dataset X = [x1, x2, · · · , xn]∈Rd×n and there exists a map-

ping φ : X 7→ V which maps the data sample from input space, Rd, to a reproducing
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kernel Hilbert space, V∈Rn. Then the kernel trick is:

< φ(xi), φ(xj) > =φ(xi)
Tφ(xj) = K(xi, xj)

where, K=KT∈Rn×n
+ is the positive semi-definite kernel matrix. In Fig. 1.2, it is

shown how the kernel trick makes a non-linearly separable data in input space to a

linearly separable data in high dimensional feature space.

Figure 1.2: Kernel Trick.

But in kernel method, the choice of the kernel function is important. To overcome

this, kernel learning algorithms are proposed where multiple kernel functions are used

instead of a single kernel function. Then the optimal kernel is learned by an opti-

mization algorithm.

1.1.3 Spectral Clustering

Given a set of data points x1, x2, · · · , xn and some notion of similarity sij between all

pair of data points xi and xj, the intuitive goal of the clustering is to partition the

data points into several groups such that the points in the same group are similar

and points in different group are dissimilar to each other. So, a nice way to represent
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Figure 1.3: Multiple Kernel Learning

the data is in form of the similarity graph G = (V,E), where V = v1, · · · , vn is the

of the vertex and E is the set of edges of the graph, G. Each vertex vi in this graph

represents a data point xi. Two vertices are connected with a edge whose weighted is

denoted as sij where sij is symmetric and non-negative. Spectral clustering tries to

divide the data samples into C clusters by finding n indicators p1, p2, · · · , pn which

satisfies:

minimize
f1,f2,··· ,fn

∑
i,j

sij‖pi − pj‖2

Let, S be the n×n matrix constituted of the similarities sij, D be the diagonal matrix

with its ith diagonal element being the sum of ith row of S, i.e Dii = Wi1 + Wi2 +

· · · + Win. Matrix D is called as degree matrix. Spectral clustering solves the above

equation by finding the smallest eigenvalues and their corresponding eigenvectors of

the Laplacian matrix, L = D −W . Since the smallest eigenvalue λ1 of L is always

0 which corresponds to the trivial solution of the constant-one eigenvector 1, the

solution of spectral clustering is constructed by the eigenvectors corresponding to the

next C smallest eigenvalues, λ2, λ3, · · · , λC+1. After stacking these C eigenvectors

into a matrix P , we get P∈Rn×C. The ith row of P corresponds to the indicator pi

for xi and the matrix P is called a indicator matrix.
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1.1.4 Kernelized Graph-based Learning

Let, X∈Rd×n be the data matrix with n data points each having d dimensional feature.

Now, according to the self-expressive property [1], each data point can be represented

as the linear combination of the other data points.

xi =
∑
j

xjsij

where, sij denotes the similarity between the ith and jth data point and sij ≥ 0. Now,

S∈Rn×n can be treated as a similarity matrix where the ijth element of S is sij and it

represents the global structure of the data. The similarity matrix S can be obtained

by solving the following minimization problem:

minimize
S

‖X −XS‖2F + λ‖S‖2F

subject to S > 0.
(1.1)

where, λ is a tuning parameter. It can be observed from Eq. 1.1 that it assumes linear

relationship among the data points. Since, the real world data sets shows non-linear

relationship between the data points, to recover the non-linear relationship, Eq. 1.1

can be extended to kernel space as following:

minimize
S

‖φ(x)− φ(x)S‖2F + λ‖S‖2F

subject to S > 0.
(1.2)

where, φ is the kernel mapping function. Now using the kernel trick, Eq. 1.2, the can

be rewritten as:

minimize
S

Tr(K − 2KS + STKS) + λ‖S‖2F

subject to S > 0.
(1.3)
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1.2 Related Work

To appreciate the proposed work, it is necessary to present the existing graph-based

learning method briefly. The related existing work is categorized into two parts:

• Graph-based clustering and

• Graph-based semi-supervised classification.

1.2.1 Graph-based Clustering

Spectral clustering (SC) method [2] is considered as the baseline in the field of graph-

based clustering. In this method, a given set of data points x1, x2, · · · , xn can be

expressed in the form of similarity graph G = (V,E) where, V= (v1, v2, · · · , vn) is a

set of vertices and each vertex denotes a data point. Different methods [3], such as:

the ε-neighborhood graph, k-nearest neighbor graph, the fully connected graph, are

used to create the similarity graph in spectral clustering. The Laplacian matrix L is

formed from the similarity graph and then the clustering task is performed by using

K-means algorithm on some of the largest eigenvectors of L. But the traditional SC

method uses only a single affinity (similarity) matrix. But in many applications, mul-

tiple useful features are available therefore multiple affinity matrices. To obtain an

optimal affinity matrix by using those multiple affinity matrices, affinity aggregation

for spectral clustering (AASC) has been proposed in [4]. In forming a Laplacian ma-

trix, the choice of the number of neighbours, the dealing with data outliers and noise

are important. To solve those issues, simplex sparse representation (SSR) method

[5] has been proposed which automatically chooses the number of neighbours and

the sparse representation of the Laplacian matrix leads to the reduced computational

cost and robustness to the data outliers. Most of the graph-based clustering meth-

ods create a graph from the data. If the graph is of low quality then the clustering

performance gets affected. To solve this issue, a constrained Laplacian rank graph-

based clustering algorithm based on l1 and l2 norm has been proposed in [6]. Real
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data are often of compound quality and it affects the graph learning resulting in poor

clustering performances. To make the graph-based clustering less sensitive to the

noise, a robust graph learning has been demonstrated in [7] where the raw data are

decomposed into two low-rank matrices, one is called “clean data” and other is called

“noise/errors” and then the similarity matrix is learned from the “clean data”.

In real-world datasets, samples are generally non-linearly separable. The methods,

described earlier, don’t consider that nonlinearity present in the dataset. In order to

incorporate this nonlinearity into the linear graph-based framework, various kernel-

ized graph-based framework have been proposed. In kernel k-means method (KKM)

[8], representation of data points into a higher dimensional feature space is performed

by using a nonlinear function called kernel function and then the data points are

separated linearly in the high dimensional feature space. In [9], a weighted Kernel

Principal Component Analysis approach has been stated for classical graph-based im-

age segmentation problem where the clustering model can be trained and validated

on sub-sampled parts of the image to be segmented thus reducing the computational

time for image segmentation. But these kernelized methods rely only on a single

kernel thus the learning performance depends on the choice of the kernel. To solve

this issue, various multiple kernel learning methods have been proposed in [10], [11],

[12]. In [13], multiple kernel k-means (MKKM) method has been described. MKKM

method is same as KKM method but the issue of kernel choice in KKM is taken

care of by using multiple kernel instead of a single kernel. But both the KKM and

MKKM methods are sensitive to noise and data outlier. To take care of this problem,

a robust multiple kernel k-means (RKKM) using l2,1 norm has been proposed in [14].

A robust kernelized group sparse graph construction has been presented in [15] where

an informative graph is created by using auto-grouped sparse regularization based on

the l1-graph [16]. A low-rank kernel learning method for graph-based clustering has

been described in [17] where multiple kernels are used and low-rank optimization of

the kernel matrices make the framework less sensitive to outliers. This low-rank ker-

nel matrices exploit the similarity nature of the kernel matrices and seek an optimal
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kernel matrix from the neighbourhood of candidate kernels. While using multiple

kernels, an important goal is to assign proper weight to each of the kernels. A self-

weighted multiple kernel learning has been stated in [18] where an optimal kernel is

learned from the multiple candidate kernels and a proper weight is assigned to each of

the kernels automatically. But all these methods use a single view for the clustering

task.

The clustering performances can be improved by using multiple views instead of

single view and the multi-view graph-based clustering methods have been proposed

for better clustering performances. A robust multi-view k-means clustering has been

described in [19] where multiple views of the dataset are used and l2,1 norm is used

to make the framework robust. A weight assignment parameter is needed for proper

weight assignment to each view. A co-training approach for multi-view spectral clus-

tering has been proposed in [20] where a graph is formed for each view and then

spectral clustering is performed on each graph. Now the clustering of data points

is done by using discriminative eigenvectors of one view and this clustering is used

to improve the graph structure of the other views and vice-versa. When multiple

views of a dataset are available, then one approach to do clustering task is to look

for the cluster indicator matrix which is consistent across all the views, i.e., a certain

data samples should have the same membership in all the views. This is achieved by

the co-regularization [21] of the clustering hypothesis. Auto-weighted multiple graph

learning has been proposed in [22] where a graph is created for each view and each

of them has consistent cluster indicator matrix for all the views but each individ-

ual graph has partial information to learn the real manifold. Also proper weight is

assigned to every graph. In [23], two multi-view clustering with multiple graph meth-

ods are stated. One is parameter weighted multi-view clustering with multiple graph

where a proper weight is assigned to each view by introducing a hyper-parameter.

Another one is self-weighted multi-view clustering with multiple graph where a proper

weight is assigned to each view automatically according to their contribution to the

clustering task. A multi-view clustering with soft capped norm algorithm has been
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proposed in [24] where the use of soft capped norm reduces the different label noises

present in the data and make the algorithm less sensitive to the noises.

1.2.2 Graph-based Semi-supervised Classification

It is often challenging to obtain labelled data whereas unlabelled data is easily avail-

able. That’s why semi-supervised learning is important and useful in machine learning

and many research works have been conducted on this and one of them is graph-based

semi supervised learning method. Graph-based methods consider the labelled and un-

labelled samples as the vertices of the graph and utilizes the weight of the edges to

pass information from labelled samples to unlabelled samples.

One of the most important assumptions for semi supervised learning is the assump-

tion of consistency. It says: (i) neighbourhood points are likely to have same labels

and (ii) points on the same structure are likely to have same label. In [25], a method

called learning with local and global consistency has been proposed using the assump-

tion of consistency where a classifying function has been designed which is sufficiently

smooth with respect to the intrinsic structure revealed by the labelled and unlabelled

samples. Most of the semi supervised learning methods are having two stages: (i)

creating an affinity or similarity matrix form the dataset and (ii) propagates infor-

mation to the unlabelled data from labelled data through the affinity matrix. But

in [26] a unified framework for semi supervised learning has been proposed where

both the affinity matrix and unknown labels are learned simultaneously. Another

semi supervised learning framework with adaptive neighbours has been proposed in

[27] where the label of the unlabelled data and local structure of the graph is learned

simultaneously. The graph-based semi-supervised learning methods mainly consider

the single label problem. But in real life the problems are associated with multiple

labels. To address this multiple label issue, a multi labels semi supervised learning

framework has been described in [28]. In most of the cases, when a new unlabelled

data point is presented then for labeling that data point the graph is again rebuilt and



1.2 Related Work 11

the classification algorithm is run from the starting which is computationally heavy.

So when unlabelled dataset is large then scalability becomes a concerning issue. To

solve this scalability issue, a graph-based harmonic mixture model is presented in

[29].

Later to consider the nonlinear relation among different data samples, kernel meth-

ods have been incorporated in linear graph-based semi supervised framework. Kernel-

ized semi supervised methods have improved the learning performances drastically.

A kernelized graph-based semi supervised framework has been stated in [30] where

spectral kernel is designed for the given dataset. Another kernelized method called

hyperparameter and kernel learning for graph-based semi supervised classification

has been presented in [31] where the hyperparameter that defines the structure of the

similarity graph is learned as well as the kernel matrix while adhering to a Bayesian

framework. In [32], a kernel based semi supervised learning has been proposed where

the vector-based and graph-based approach have been combined together. In [18] a

self-weighted multiple kernel semi supervised classification framework has been pre-

sented where the kernel choice is resolved by using multiple kernels and also proper

weight is assigned to each kernel according to their importance to the learning task.

All these graph-based semi-supervised learning methods use only a single view of

the dataset. Later to improve the semi supervised learning performances, various

methods and frameworks using multiple views have been proposed. A graph-based

multi modality method has been stated in [33] where each kind of feature is con-

sidered as a modality and it is represented by one independent graph. An iterative

fusion approach has been presented in [34] for graph-based semi supervised learn-

ing. In this framework, each feature is considered as a view and label propagation

is performed by using multiple views. Also the proper weights are assigned to the

views dynamically to reduce the adverse effects of irrelevant views on the learning

task. A co-regularization framework has been presented in [35] for semi supervised

classification task. In this method, the classifier is learned in each view through forms



12 Chapter 1 : Introduction

of multi-view regularization. Multiple graph label propagation method has been de-

scribed in [36]. This method improves the semi supervised learning performances

by eliminating noisy graph while integrating multiple graphs. There exists a sparse

weight co-efficient which helps to find the more important graph thus improving the

performance.

1.3 Objectives of the Thesis

Based on the aforementioned discussion, it is observed that graph-based learning using

multiple kernels on multiple views has received considerably less recognition. The

objective of this thesis is to propose a graph-based learning method that uses multiple

kernels as well as multiple views so that the unsupervised graph-based learning as

well as semi-supervised graph-based learning can achieve improved performances than

other existing graph-based methods and to make the proposed method robust to noise.

1.4 Contributions of the Thesis

The main contributions of this thesis are listed below:

• proposing a novel method to construct an optimal kernel and an optimal simi-

larity matrix of the graph using multiple kernel on multiple views.

• proposing a robust framework for graph-based learning by using l2,1 norm as

well as by doing the low rank kernel optimization.

• proposing a novel kernelize graph-based learning method on high dimensional

data to improve the learning performances by getting rid of redundant features.

• stating an algorithm to assign appropriate weight to each kernel of each view

automatically without introducing any extra weight assignment parameter.

• integrating the graph construction, kernel and label learning, and dimension
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reduction.

1.5 Dataset

Different graph-based learning algorithms are described in this thesis. To show the

performances of these algorithms, these algorithms are tested on various real-world

benchmark datasets. The details of the datasets are as follows :

Animal with Attributes

This dataset [37] consists of 50 classes and 6 features. Out of 50 classes, 10 classes

(Antelope, Bat, Buffalo, Dolphin, Giraffe, Horse, Lion, Mouse, Seal, and Squirrel)

are considered for the experiment with each of the 10 classes having 10 samples each.

Three published features are considered: Color Histogram (CQ), Local Self-Similarity

(LSS) [38] and Pyramid Histogram of Orientation Grdients (PHOG) [39].

MSRC-v1

This dataset [40] consists of 240 images divided into 8 classes. 7 classes [41] composing

of Airplane, Bicycle, Building, Car, Tree, Cow, and Face each consisting of 30 images

are selected for this experiment. From each image, three visual features are extracted:

Color Moment (CM) with dimension 27, GIST with dimension 512 [42] and Local

Binary Pattern (LBP) feature with dimension 59.

Jaffe

This dataset [43] consists of 213 images of various facial expressions of 10 different

Japanese models. For the experiments, 200 images consists of 20 facial images for

each model have been considered. Three different features: 512 dimension GIST, 420

dimension CLR and 512 dimension Scale-invariant Feature Transform (SIFT), have

been extracted from each image.
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Yale

This dataset [44] consists of 165 grayscale images of various facial expressions of 15

different individuals. Three different features: 512 dimension GIST, 22356 dimension

HOG and 59 dimension LBP feature, have been extracted from each image.

Reuters Multilingual Data

This textual dataset [45] contains features of documents originally written in five

languages (English, French, German, Spanish, Italian) and their translations over 6

categories. 180 documents are randomly sampled in a balanced manner with each of

the 6 classes consisting of 30 documents each. Documents originally in English have

been used as a first view and their French, German, Spanish and Italian translations

have been used as second, third, fourth and fifth views.

Caltech101

It [46] contains 8677 images with 101 different categories. Five classes (Garfield,

Motorbike, Snoopy, Stop-Sign and Windsor-Chair) are considered. From each image,

six features: Gabor features with dimension 48, Wavelet Moments with dimension 40,

CENTRIST features with dimension 254, HOG features with dimension 1984, GIST

features with dimension 512, and LBP features with dimension 928, are extracted.

1.6 Evaluation Metric

To measure the performance of the learning tasks of all the stated algorithms in this

thesis, three important evaluation metrics have been adopted : Accuracy (ACC),

Normalized Mutual Information (NMI) and Purity (PUR).

ACC(y, s) =

∑n
i δ(si,map(si))

n
(1.4)
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where y is the ground truth label with c classes and s is the resulting clustering label

with ĉ classes of any data sample xi and δ(x, y) = 1 if x = y, δ(x, y) = 0 otherwise.

map(si) is the best mapping function. Kuhn-Munkres algorithm is used to permute

the clustering labels to match the ground truth labels. A larger value of ACC denotes

a better clustering performance.

The NMI is the shared information between a pair of clusters [47], defined as:

NMI(y, s) =
I (y ; s)

H (y) + H (s)
(1.5)

where, I (y ; s) is the mutual information between and y and s, H (y) and H (s) are

the entropy of y and s.

PUR is another popular evaluation metric that is used to measure the cluster-

ing performance. If y = (y1, y2, y3, · · · , yn) is the ground truth label, and s =

(s1, s2, s3, · · · , sn) is the clustering result label, then purity is computed by assigning

each cluster to the class which is the most frequent in the cluster, followed by counting

the number of correctly assigned objects and finally dividing by n.

PUR(y, s) =
1

n

∑
k

max
j
|sk ∩ yj| (1.6)

Like ACC and NMI, a larger value of PUR denotes a better clustering performance.

1.7 Organization of the Thesis

This thesis is organized as follows.

A robust graph-based learning framework is discussed in Chapter 2. Instead of

a single view, multiple views are considered for the learning task. Kernel method is

incorporated in the framework. The advantages of using multiple kernels are discussed

in this chapter. The overall learning performances of the proposed framework are

verified by extensive experiments on different real-world datasets.
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A robust graph-based clustering method is discussed in Chapter 3. Here a low-

rank kernel optimization is performed by using nuclear norm instead of using l2,1

norm as discussed in Chapter 2. The proposed method is less sensitive to the noise

present in the dataset. Here also for better performance of the clustering task multiple

kernel and multiple views are incorporated to the framework. The performance of the

clustering task are verified by several experiments on different real-world benchmark

datasets.

A kernelized graph-based learning method for high dimensional data is described in

Chapter 4. Here Kernel Principal Component Analysis (KPCA) is used to incorporate

nonlinear relationship between different data samples into the framework as well as

to reduce the dimension of the dataset thus getting rid of redundant features present

in the high dimensional dataset. Various experiments on different real-world datasets

validates the excellent learning performances of the proposed method.



Chapter 2

Robust Graph-based Learning

using Multiple Kernel on Multiple

Views

2.1 Introduction

A number of existing graph-based learning models are linear [2], [48], [49] and they

don’t consider the nonlinear relationship that may be present in a dataset. But most

real-world applications have data that are randomly distributed and therefore, not

linearly separable. So, the use of linear graph-based learning framework on such data

may degrade the learning performances. Therefore, to consider the existing nonlinear

relationship between different data samples and to introduce nonlinearity into linear

models, different kernel methods have been widely applied in many machine learning

tasks [12], [15], [50]. But one of the disadvantages of kernel method is that it requires

a predefined kernel to be selected and tuned. If the choice of kernel is poor then it

may affect the learning performances. So, it is a challenging task to choose the most

suitable kernel for a specific task. To address this, several multiple Kernel Learning
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(MKL) algorithm is proposed [51], [52], [53]. Later those multiple kernel learning

methods are used in different graph-based learning methods [13], [18].

Different kernelized graph-based learning methods perform the learning task only

on a single view of the data. But methods, combining different views and contain-

ing different partial information, have been shown to improve the overall learning

performances [23], [54], [55]. In many real life applications and scientific data ana-

lytic problems such as multi-camera surveillance system, social computing, web page

classification, etc., data are collected from different views, where each view contains

different information but belong to the same class. For example, in web page classi-

fication, a web page can be described by the document text and at the same time by

the anchor text attached to hyperlinks pointing to a particular page where the docu-

ment text is considered as the first view and the attached hyperlink is considered as

the second view.

To use different views of a dataset with different partial information while incor-

porating the kernel method in the learning task, a novel self-weighted multi-view

multiple kernel graph-based learning (SMVMKL) has been proposed. A key step in

SMVMKL is to use multiple views while incorporating nonlinearity into the model

by defining multiple kernels for each view and automatically assigning an optimal

weight to each kernel of each view without the need of introducing an additional

weight assignment parameter [11], [19]. But in real life, noises may present in the

dataset and the performance of the proposed SMVMKL method may get effected

due to the presence of the data outliers and noises. To nullify this effect, another

novel framework named robust self-weighted multi-view multiple kernel graph-based

learning (RSMVMKL) has been proposed by using the l2,1-norm [7], [14].

The experiments for both the proposed SMVMKL and RSMVMKL are imple-

mented on several benchmark datasets and the results validate that the better per-

formances of both the proposed methods.
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2.2 Methodology

Different features of a dataset are introduced as different views and multiple kernels

are assigned to each of the views. Using multi-views and multiple kernels, the optimal

similarity matrix is learned which can be directly partitioned into several clusters

equal to the number of data class. The issue of weight assignment to each kernel of

each view is also addressed.

2.2.1 Kernelized Graph-based Learning

There is a given the datasetX∈Rd×n with only one view whereX = [x1,x2,x3, · · · ,xn],

xi∈Rd×1, n is the total number of data points and d is the feature dimension. The

given dataset X has m different number of clusters or classes. A data point xi of

the dataset can be connected by all the data points by edges with weight sij and

from these weighted edges we can form a matrix S∈Rn×n called similarity matrix. In

spectral analysis there is another matrix, L=
(

D− S+ST

2

)
∈Rn×n called the Laplacian

matrix where D∈Rn×n is called degree matrix. D is a diagonal matrix and its ith

diagonal element is
∑

j(sij+sji)

2
. Now if the initial similarity matrix of the dataset X

is S, then the optimal similarity matrix can be learned by minimizing the following

problem:

minimize
S

‖X −XS‖2F + λ‖S‖2F

subject to S > 0.
(2.1)

where λ > 0 is a trade-off parameter. This equation is in sample space. To

incorporate the kernel method in the framework, Eq. (2.1) is converted into kernel

space by using a kernel mapping function φ. Now Eq. (2.1) can be written as:

minimize
S

‖φ(x)− φ(x)S‖2F + λ‖S‖2F

subject to S > 0.
(2.2)
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It is known that the kernel trick is K(x, y) = φ(x)Tφ(y). K∈Rn×n is a positive

semidefinite kernel matrix or Gram matrix. Now using this kernel trick ( See Appendix

A.1), Eq. (2.2) can be written as:

minimize
S

Tr(K − 2KS + STKS) + λ‖S‖2F

subject to S > 0.
(2.3)

If there are m number of clusters or classes in the dataset, a graph with exactly m

connected components is obtained by solving the minimization problem mentioned

in Eq. (2.3). This model is known as kernel based graph learning (KGL). But the

performance of this model largely depends on the choice of the kernel K.

2.2.2 Self-weighted Multi-view Multiple Kernel Learning

There is a given datasetX with q number of views denoted by (X1, X2, · · · , Xv, · · · , Xq)

where, Xv∈Rdv×n, n is the total number of data points and dv is the feature dimension

of the vth view Xv. For each view of the dataset, u number of kernels are used. The

use of multiple kernels instead of a single kernel solves the issue of choice of the ker-

nel faced in KGL method. Also for better performances of the proposed framework,

multiple views of the dataset with different partial information but same cluster in-

dicator matrix are used. This proposed learning framework that uses multiple views

and multiple kernels for each view is known as self-weighted multi-view multiple ker-

nel graph-based learning (SMVMKL). One of the issues to use multiple kernels for

each view is to assign proper weight to each kernel of each view. To solve this weight

assignment issue and to learn the optimal kernel from those multiple kernels, the

proposed SMVMKL framework is formulated depending on the the assumptions that

the kernel closer to the optimal kernel are assigned a larger value, and the contribu-

tion of a view influences the weight assigned to the kernel of that view. Using these

assumptions, the optimal kernel learning is formulated (see Appendix A.2) as:
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minimize
K

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F (2.4)

where,

Z(p,v) =
1

2‖ H(p,v) −K‖F
(2.5)

Here H(p,v) is the pth kernel of the vth view of the given dataset X and Z(p,v)

is the weight assigned to H(p,v). From Eqs. (2.4) and (2.5), it is observed that

the weight Z(p,v) depends on the target variable K which is unavailable directly.

Therefore, at every iteration, K is calculated first, and then Z(p,v) is updated by

Eq. (2.5). And instead of making the optimal kernel to be a linear combination of

candidate kernels, Eq. (2.4) allows the most suitable kernel to be in some kernel’s

neighborhood [56]. It is also noted that no additional parameter has been introduced

for the weight assignment. The optimal weight Z(p,v) for pth kernel of vth view is

calculated automatically according to the kernel matrices. Now combining Eqs. (2.3),

(2.4), and (2.5), the SMVMKL framework can be formulated as:

minimize
S,K

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F

+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

subject to S > 0

(2.6)

The similarity graph matrix S follows the following important property [57].

Theorem 2.1 The multiplicity m of the eigenvalue 0 of the Laplacian matrix L is

equal to the number of connected components in the graph associated with S.

This property imposes an extra constraint on S and that constraint is rank(L) =
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n−m. After incorporating this constraint, Eq. (2.6) can now be written as:

minimize
S,K

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F

+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

subject to S > 0, rank(L) = n−m

(2.7)

The constraint in Eq. (2.7) will be ensured if
∑m

i=1 σi(L) = 0 where, σi is the ith

eigenvalue of L. Now defining a hyper-parameter α, Eq. (2.7) can be rewritten as:

minimize
S,K

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F

+ α
m∑
i=1

σi(L)

+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

subject to S > 0

(2.8)

According to the Ky Fan’s Theorem [58]:

minimize
PTP=I

Tr
(
P TLP

)
=

m∑
i=1

σi(L) (2.9)

where P∈Rn×m is the label or cluster indicator matrix. Using Eq. (2.9), Eq. (2.8)

can be rewritten as:

minimize
S,P,K

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F

+ αTr
(
P TLP

)
+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

subject to S > 0, P TP = I

(2.10)
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This model formulates the SMVMKL framework. This framework negotiates be-

tween the process of label learning and the process of optimal kernel learning and the

performance of this framework can be improved repeatedly by iterative updating.

2.2.3 Robust Kernelized Graph-based Learning

There is a given the dataset X∈Rd×n where X = [x1, x2, x3, · · · , xi, · · · , xn], xi∈Rd×1,

n is the total number of data points and d is the feature dimension of each data point.

If the initial similarity matrix of the given dataset X is S, then the optimal similarity

matrix can be learned by minimizing the problem given in Eq. (2.1). But the optimal

similarity matrix may get affected by the presence of outliers in the dataset. To solve

this issue a robust framework is needed and the robustness is obtained by using the

l2,1-norm instead of the Frobenius norm used in Eq. (2.1). Now Eq. (2.1) becomes:

minimize
S

‖X −XS‖2,1 + λ‖S‖2F

subject to S > 0.
(2.11)

where λ > 0 is a trade-off parameter. Using the kernel mapping function φ, Eq.

(2.11) can be written as:

minimize
S

‖φ(X)− φ(X)S‖2,1 + λ‖S‖2F

subject to S > 0.
(2.12)

Using the kernel trick, Eq. (2.12) can be rewritten ( See Appendix A.3) in the kernel

space as:

minimize
S

n∑
i=1

√
kii − 2kisi + sTi Ksi + λ‖S‖2F

subject to S > 0.

(2.13)

where, si∈Rn×1 is the ith column of S, ki∈R1×n is the ith row of K and kii is the ith

diagonal element of K. This framework is known as robust kernelized graph-based
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learning.

2.2.4 Robust Self-weighted Multi-view Multiple Kernel Learn-

ing

If the given dataset X has q number of views denoted by (X1, X2, · · · , Xv, · · · , Xq)

where, Xv∈Rdv×n, n is the total number of data points and dv is the feature dimension

of the vth view Xv. For each view of the dataset, u number of kernel are used. Now

following the same procedure that formulates the SMVMKL framework and using

Eq. (2.13), the robust self-weighted multi-view multiple kernel learning framework

(RSMVMKL) framework can be formulated as:

minimize
S,P,K

n∑
i=1

√
kii − 2kisi + sTi Ksi + λ‖S‖2F

+ αTr(P TLP )

+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

subject to S > 0, P TP = I

(2.14)

Eq.(2.14) can be simplified into:

minimize
S,P,K

n∑
i=1

dii
(
kii − 2kisi + sTi Ksi

)
+ λ‖S‖2F

+ αTr
(
P TLP

)
+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

subject to S > 0, P TP = I

(2.15)

where,

dii =
1√

kii − 2kisi + sTi Ksi
(2.16)
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2.3 Optimization

Proposed SMVMKL and RSMVMKL frameworks have been stated in Eq. (2.10)

and Eq. (2.15) respectively. From both the equations it is observed that both the

proposed frameworks negotiate between the process of label learning and optimal

kernel learning. Therefore, to solve the problem sated in Eq. (2.10) and Eq. (2.15)

two iterative algorithms have been stated where S, P , and K are updated in an

iterative manner. Both the proposed algorithms serve two purpose: clustering and

semi supervised classification.

2.3.1 SMVMKL

2.3.1.1 Clustering

For simplicity, the problem in Eq. (2.10) has been divided into three sub-problems

with respect to every variable which can be solved by an alternating and iterative

algorithm. For every sub-problem only one variable is updated and other variables

are considered as constant.

(i) To update S, keeping P and K constant, Eq. (2.10) becomes:

minimize
S

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F

+ αTr
(
P TLP

)
subject to S > 0

(2.17)

An elementary but very important equation of spectral analysis is:

∑
i,j

1

2
‖Pi,: − Pj,:‖22sij = Tr(P TLP ) (2.18)

By using Eq. (2.18), it can be shown that the problem in Eq. (2.17) is column wise
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independent and it can be written for each ith column of S as:

− 2kisi + sTi Ksi + λsTi si +
α

2
gTi si (2.19)

where gi= [gi1, gi2, · · · , gin]T ∈Rn and gij = ‖Pi,: − Pj,:‖22.
Setting the first derivative of Eq. (2.19) with respect to si to zero, we get:

− 2ki + 2Ksi + 2λsi +
α

2
gi = 0 (2.20)

From Eq. (2.20) each column of S is obtained as:

si = (λI +K)−1(ki − α

4
gi) (2.21)

Thus from Eq. (2.21) it is easily observed that each ith column si can be obtained

parallelly.

(ii) To update kernel matrix K, keeping S and F fixed, the problem stated in Eq.

(2.10) can be written as:

minimize
K

Tr
(
K − 2KS + STKS

)
+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F
(2.22)

By setting the first derivative of Eq. (2.22) with respect to K to be zero, we get

I − 2ST + SST + 2β

q∑
v=1

u∑
p=1

Z(p,v)

(
K −H(p,v)

)
= 0 (2.23)

By solving Eq. (2.23), we get the optimal kernel matrix as:

K =
2ST − SST − I + 2β

∑q
v=1

∑u
p=1 Z(p,v)H

(p,v)

2β
∑q

v=1

∑u
p=1 Z(p,v)

(2.24)
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From Eqs. (2.21), and (2.24), it is observed that S and K are dependent on each

other and can negotiate between themselves for a better result.

(iii) To update the label indicator matrix P keeping S and K fixed, the problem

in Eq. (2.10) becomes as following:

minimize
P

αTr
(
P TLP

)
subject to P TP = I

(2.25)

If there are m number of classes, then the optimal solution of P is the m eigenvectors

of L corresponding to the m smallest eigenvalues.

2.3.1.2 Semi-supervised Classification

Two fundamental stages of semi-supervised classification are graph construction and

label inference. These stages are unified in the proposed SMVMKL framework. Us-

ing the labelled samples, the graph is constructed and then by label inference, the

unknown labels are predicted.

The SMVMKL framework for semi-supervised classification is given as:

minimize
S,P,K

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F

+ αTr(P TLP )

+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

subject to S > 0, Pl = Yl

(2.26)

where l is the total number of labelled points, and Yl = [y1, y2, y3, · · · , yi, · · · , yl]T ∈Rl×m

is the labelled indicator matrix where yi ∈ Rm×1 is the labelled indicator vector of

the ith sample. When yij = 1, the ith sample belongs to the jth class. Without loss

of generality, the data points are divided in such a way that the first l data points

are labelled and rest of the u data points are unlabelled, such that l+ u = n and n is
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the total number of data points. Now the Laplacian matrix L and and class indicator

matrix P can be written as a block matrix:

L =

 Lll Llu

Lul Luu

 and P =

 Pl

Pu

 (2.27)

where, Pl is the labelled indicator matrix and Pu is the unlabelled indicator matrix.

Now Eq. (2.26) can be solved using the same iterative procedure used to solve Eq.

(2.10), but the difference lies in updating P . The optimal class indicator matrix P is

obtained by solving the following minimization problem:

minimize
P

Tr(P TLP )

subject to Pl = Yl

(2.28)

By setting the first derivative of Eq. (2.28) with respect to P equal to zero, we get: Lll Llu

Lul Luu

 Yl

Pu

 = 0 (2.29)

By solving Eq. (2.29) we get,

Pu = −L−1uuLulYl (2.30)

If ijth element of P is pij, then the final class labels of the unlabelled data points can

be assigned by the following decision rule:

yi = arg max pij (2.31)

∀i = l + 1, l + 2, ..., n. ∀j = 1, 2, 3, ...,m

The proposed SMVMKL algorithm is summarized and stated in Algorithm 1.
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Algorithm 1 : Proposed SMVMKL framework

Input: Kernel matrices for each view: {H(p,v)}, parameters α, β and λ.

Output:
Clustering: Similarity matrix S with exact m connected components and optimal
kernel matrix K.
Classification: The label matrix P for all data points.

Initialization: S, K , Z(p,v).

Repeat:
• update the ith column of S as per Eq. (2.21)

• calculate K using Eq. (2.24)

• update Z(p,v) by Eq. (2.5)

• Clustering: calculate P by solving Eq. (2.25) as the m smallest eigenvector,
correspond to the m smallest eigenvalues of the Laplacian matrix L.

Until stopping criterion is met.

• Classification: assign the class label to the unlabelled points by Eq. (2.31)

2.3.2 RSMVMKL

A robust self-weighted multi-view multiple kernel graph-based learning algorithm

has been proposed to solve the RSMVMKL framework stated in Eq. (2.15). This

proposed algorithm also serves two purposes: clustering and semi supervised classifi-

cation.

2.3.2.1 Clustering

For simplicity, the problem defined in Eq. (2.15) has also been divided into three

different sub-problems for with respect to each variable which can be solved by an

iterative algorithm. For every sub-problem only one variable is updated and other

variables are considered as constant.
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(i) To update S keeping F and K fixed, Eq. (2.15) can be written as:

minimize
S

n∑
i=1

dii
(
−2kisi + sTi Ksi

)
+ λ‖S‖2F

+ αTr
(
P TLP

)
subject to S > 0

(2.32)

Using the same elementary equation of spectral clustering as stated in Eq. (2.18),

it is observed that the problem stated in Eq. (2.32) is column wise independent for

each ith column si of S and it can be stated as:

dii(−2kisi + sTi Ksi) + λsTi si +
α

2
gTi si (2.33)

Now setting the first derivative of Eq. (2.33) with respect to si to be zero, each

column of the similarity matrix is obtained as:

si = (λI + diiK)−1(diik
i − α

4
gi) (2.34)

Thus each ith column si can be computed parallelly.

(ii) To get the optimal kernel matrix K keeping S and P fixed, Eq.(2.15) can be

written as:

minimize
K

n∑
i=1

dii
(
kii − 2kisi + sTi Ksi

)
+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

(2.35)

By setting the first derivative of Eq.(2.35) with respect to K to be zero, the optimal

kernel matrix is obtained as:

K =
2β
∑q

v=1

∑u
p=1 Z(p,v)H

(p,v) −
∑n

i=1 dii

(
Ei − 2Ŝi + si

T si

)
2β
∑q

v=1

∑u
p=1 Z(p,v)

(2.36)
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where, Ŝi = [0, 0, · · · , si, · · · , 0]T ∈Rn×n and Ei∈Rn×n whose all elements are zero

except the (ii)th element.

(iii) For updating the class indicator matrix P keeping S and K fixed, the problem

in Eq.(2.15) can be restated as:

minimize
P

αTr(P TLP )

subject to P TP = I
(2.37)

If there are m number of classes, then the optimal solution of P is the m eigenvectors

of L corresponding to the m smallest eigenvalues.

2.3.2.2 Semi-supervised Classification

Following the same procedure adopted in semi-supervised classification using SMVMKL,

the RSMVMKL framework can be written as:

minimize
S,P,K

n∑
i=1

dii
(
kii − 2kisi + sTi Ksi

)
+ λ‖S‖2F

+ αTr
(
P TLP

)
+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

subject to S > 0, Pl = Yl

(2.38)

where l is the total number of the labelled points.

Eq.(2.38) can be solved using the iterative procedure used to solve Eq. (2.15), only

differing in the updation method of P . To solve for P , the steps for solving Eq.(2.26)

have been followed and the unlabelled indicator matrix Pu is obtained from Eq. (2.30).

The final class labels of the unlabelled data points can be assigned by Eq. (2.31).

The proposed RSMVMKL algorithm is summarized and stated in Algorithm 2.
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Algorithm 2 : Proposed RSMVMKL framework

Input: Kernel matrices for each view: {H(p,v)}, parameters α, β and λ.

Output:
Clustering: Similarity matrix S with exact m connected components and optimal
kernel matrix K.
Classification: The label matrix P for all data points.

Initialization: dii, Ei, S, K .

Repeat:
• update the ith column of S as per Eq.(2.34)
• calculate K using Eq.(2.36)
• update dii by Eq.(2.16)
• update Z(p,v) by Eq.(2.5)
• Clustering: calculate P by solving Eq.(2.25) as the eigenvectors, corresponds to

the m smallest eigenvalues of the Laplacian matrix, L.
Until stopping criterion is met.

• Classification: assign the class label to the unlabelled points by Eq.(2.31)

2.4 Experiment

Various experiments are performed on different real-world datasets to validate the

performances of the proposed SMVMKL and RSMVMKL frameworks. For each

framework, multiple views of a dataset are used and multiple kernels are assigned

to each view of the data. Here twelve kernels are designed for each view of a given

dataset. Of which, seven are Gaussian kernel of the form: K(y, z) = exp(−‖ y −
z‖22/(nd2max)), where the maximum distance between samples is dmax and n varies over

the set [0.01,0.05.0.1,1,10,50,100]. The 8th kernel is of linear form: K(y, z) = yT z.

And the last four are polynomial kernel of the form: K(y, z) = (a + yT z)b where a

and b vary between {0, 1} and {2, 4} respectively. For semi-supervised classification,

the percentage of labeled data is changed to observe the performances of both the

SMVMKL and RSMVMKL algorithm while different number of labeled data samples

are vailable. For the exiperiments, 10%, 30%, and 50% of labelled data are considered.
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2.4.1 Dataset

To show the better learning performances of both the SMVMKL and RSMVMKL,

various experiments are performed on different real-world benchmark datasets. To

perform the learning task, Animal with Attributes [37], MSRC-v1 [40], Jaffe [43],

Reuters Multilingual Data [45] and Caltech101 [46] datasets are used for both the

SMVKL and RSMVMKL framework. As, both the SMVMKL and RSMVMKL al-

gorithm based on multi-view, different views are extracted from those datasets. The

details of the datasets are stated in section 1.5. All the related information of the

datasets are given in Table 2.1.

Table 2.1: Statistics of the datasets used for the experiment

dataset number of views Instances Classes
Animal with Attributes 3 100 10

MSRC-V1 3 210 7
Jaffe 3 200 10

REUTERS 5 180 6
Caltech101 6 241 5

2.4.2 Comparison Methods

Comparisons with the following state-of-the-art methods have been carried out to

observe the effectiveness of the proposed SMVMKL and RSMVMKL algorithms.

• MMSC [41]: Multi-modal spectral clustering method learns a Laplacian matrix

that is shared commonly by each and every modal of the dataset. Non-negative

relaxation is also used to improve clustering performances.

• Co-train MVSC [20]: In a co-training approach for multi-view spectral clus-

tering method, a graph is learned for each view and spectral clustering is per-

formed on each graph. The clustering in one view helps to improve the perfor-

mances of other views and vice-versa.

• Co-reg MVSC [21]: In a co-regularized multi-view spectral clustering ap-
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proach, a cluster indicator matrix is learned where each sample belongs to the

same cluster for each view and it is done by co-regularizing the different clus-

tering hypothesis.

• SwMC [23]: In self-weighted multi-view clustering with multiple graphs method,

a common Laplacian rank constrained graph is obtained for each and every view

and the proper weight assignment to each view is done automatically.

• MVCSK [59]: In this kernelized multi-view clustering method, a kernel is used

to consider the nonlinearity present in the dataset and the use of kernel improves

the clustering performances.

• GFSC [60]: In multi-graph fusion for multi-view spectral clustering, graph

fusion is performed where the fusion graph approximates the original graph

of each view and maintains a proper structure of the cluster. Simultaneously

spectral clustering is also performed.

• RGC [7]: The method of robust graph learning from noisy datais a robust

version of manifold regularized robust principal component analysis (RPCA).

It uses the enhanced low-rank recovery by exploiting the graph smoothness

assumption for better graph learning performance.

• AMGL [22]: Auto-weighted multiple graph learning method learns an optimal

graph for each view and automatic weight assignment to each view is also done.

The objective function of AMGL for semi-supervised classification is a convex

function thus obtaining the globally optimal result.

• MLAN [27]: Multi-view learning with adaptive neighbor method learns an

optimal graph for each view by learning the local structure of the graph and

the optimal graph can be partitioned into specific clusters. Here also the ideal

weight assignment to each view is done automatically.

• AMMSS [48]: Adaptive multi-modal semi-supervised classification approach

learns a class indicator matrix that is shared commonly by each modal of the



2.5 Result 35

dataset and the proper weights to different models of the dataset are assigned.

Spectral clustering (SC) [2] and semi-supervised learning using Gaussian fields and

harmonic functions (GFHF) [61] have been performed on each view of each dataset

and are considered as the baselines for clustering and semi-supervised task respec-

tively.

2.5 Result

The clustering and semi supervised classification performances of the proposed SMVMKL

and RSMVMKL frameworks have been compared with various other existing methods

mentioned here.

Table 2.2: Clustering performances on different datasets for SMVMKL and
RSMVMKL framework

Animal with Attributes MSRC-v1 Jaffe Reuters Caltech-101

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

SC(1) 0.2780 0.2381 0.2955 0.2821 0.1848 0.3298 0.4366 0.4905 0.5915 0.3467 0.1621 0.3817 0.3506 0.1889 0.3651

SC(2) 0.2435 0.1902 0.2645 0.4354 0.3826 0.5048 0.4977 0.6063 0.6526 0.3522 0.2202 0.3997 0.3614 0.1086 0.4073

SC(3) 0.2285 0.1612 0.2550 0.3728 0.3343 0.4351 0.5482 0.5766 0.6338 0.3344 0.2234 0.3778 0.4064 0.2102 0.4313

SC(4) 0.3253 0.1468 0.3586 0.5438 0.3637 0.5454

SC(5) 0.3769 0.2094 0.3997 0.5247 0.2229 0.5301

SC(6) 0.3494 0.1175 0.3512

RGC 0.2600 0.2058 0.2700 0.5305 0.4253 0.5390 0.7371 0.7940 0.7512 0.3756 0.1756 0.5867 0.0.5519 0.4525 0.5889

MMSC 0.2787 0.2479 0.3677 0.6269 0.5951 0.6395 0.8751 0.9067 0.9437 0.4478 0.3170 0.4933 0.5232 0.4028 0.5245

Co-train MVSC 0.2850 0.2534 0.3480 0.5924 0.5150 0.6433 0.9117 0.9378 0.9594 0.4167 0.2716 0.5111 0.6091 0.4488 0.6680

Co-reg MVSC 0.2570 0.2033 0.5190 0.4336 0.3753 0.5169 0.9145 0.9440 0.9678 0.4561 0.2857 0.5067 0.5855 0.4570 0.6502

SwMC 0.2200 0.1854 0.2200 0.6238 0.5669 0.6476 0.6850 0.7287 0.6700 0.2167 0.1152 0.2389 0.4979 0.2910 0.5104

MVCSK 0.2552 0.1969 0.5247 0.6429 0.5851 0.7238 0.9631 0.9512 0.9674 0.4556 0.2975 0.5611 0.5270 0.2996 0.5602

GFSC 0.2784 0.2314 0.4270 0.6976 0.6109 0.7271 0.9425 0.9652 0.9681 0.4420 0.2855 0.5956 0.6089 0.5060 0.6575

SMVMKL 0.2900 0.2637 0.5500 0.7000 0.6604 0.7312 0.9765 0.9654 0.9765 0.4788 0.3207 0.5667 0.6183 0.4756 0.6598

RSMVMKL 0.3100 0.2880 0.4400 0.7238 0.6622 0.7714 0.9800 0.9719 0.9800 0.4833 0.3347 0.6000 0.6266 0.4836 0.6680

2.5.1 Performance Evaluation

Table 2.2 and Table 2.3 show the clustering and the semi-supervised learning perfor-

mances of SMVMKL and RSMVMKL respectively. Fig. 2.1 shows that the clustering

performances of both SMVMKL and RSMVMKL methods in terms of ACC, NMI and
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Table 2.3: Semi-supervised classification performances on different datasets for
SMVMKL and RSMVMKL framework

Animal with Attributes MSRC-v1 Reuters
ACC ACC ACC

Labelled Rate 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
GFHF(1) 0.1633 0.1740 0.1757 0.5100 0.5809 0.6247 0.2148 0.2444 0.2444
GFHF(2) 0.1411 0.1386 0.1640 0.5400 0.6123 0.6571 0.2277 0.2288 0.2371
GFHF(3) 0.1744 0.1900 0.2020 0.5247 0.5963 0.6377 0.2487 0.2651 0.2822
GFHF(4) 0.2161 0.2286 0.2356
GFHF(5) 0.2432 0.2571 0.2689

RGC 0.1222 0.2038 0.2183 0.7725 0.8371 0.8857 0.3710 0.6460 0.7033
AMMSS 0.1656 0.1929 0.2200 0.4434 0.7503 0.8219 0.5519 0.6373 0.6856
AMGL 0.1556 0.2000 0.2400 0.7606 0.8980 0.9238 0.3148 0.3968 0.444
MLAN 0.1613 0.2011 0.2328 0.7794 0.8611 0.8807 0.6296 0.7158 0.7444

SMVMKL 0.1833 0.2314 0.3000 0.8196 0.9286 0.9867 0.6191 0.6910 0.8422
RSMVMKL 0.1937 0.2743 3080 0.8323 0.9116 0.9772 0.6200 0.7215 0.8358

PUR in comparison with other existing graph-based methods that used only a single

view are better. Also, Fig. 2.2 shows that both the proposed methods perform better

than various multi-view spectral clustering methods. Considering the MMSC [41]

method, where there exists a parameter that affects the creation of the Laplacian

matrix during clustering, it is noticed in Fig. 2.3 that the performance of the clus-

tering task using MMSC algorithm changes with the penalty parameter considered.

But SMVMKL and RSMVMKL methods are free from such a parameter. Also, in

the co-reg MVSC [21] method, there exists a weight parameter that affects the clus-

tering performance and is shown in Fig. 2.4. But being self-weighted, SMVMKL and

RSMVMKL methods are free from this weight parameter. Previously it has also been

stated that for the learning task, 12 different kernels have been used and an optimal

kernel is learnt from those given kernels. Now in Fig. 2.5 it has been shown how

the learning performance gets affected while using different numbers of kernel and it

is clearly observed from the figure that the learning performance is best while using

10 or 12 number of kernels and the accuracy of the performance gets reduced while

using a very small number of kernel.
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2.5.2 Convergence Analysis

The convergence of the proposed algorithms are described in this section. The equa-

tions defined in Eq. (2.10) and Eq. (2.15) are not jointly convex and the variables are

coupled with each other making it difficult to optimize the whole function at once.

Therefore those objective functions are divided into three subproblems. Eq. (2.10) is

split into Eq. (2.17), Eq. (2.22), and Eq. (2.25). Eq. (2.15) is divided into (2.32), Eq.

(2.35) and Eq. (2.37). The first two sub-problems for both the SMVMKL and the

RSMVMKL algorithms are individually convex with respect to one variable. There-

fore, the optimal solution is obtained by solving each sub-problem which converges

to a global solution. But though Eq. (2.25) and Eq. (2.37) is not convex, it has a

closed form optimal solution. In Fig. 2.6 and Fig. 2.14, it is shown how the value

of the objective function of SMVMKL algorithm converges after a few iterations on

different datasets in the case of clustering and semi-supervised classification task and

the convergence of the proposed RSMVMKL algorithm has been shown in Fig. 2.10

and in Fig. 2.17. As, the performance of the clustering largely depends on the value of

the learned similarity matrix, it has been shown in Fig. 2.7, 2.11, 2.15 and 2.18, that

how the rate of updation of the similarity matrix with each iteration also converges

and after certain numbers of iteration, the learned similarity matrix almost remains

same.

2.5.3 Parameter Tuning and Sensitivity

The proposed algorithms contain three regularization parameters: α, β and λ. In

order to find the right combination of the regularization parameters for the algorithms

to give the best performance, a grid search has been performed. The parameters are

observed to lie in the range: α ∈ [1e− 6, 1e− 3], β ∈ [100, 1000] and λ ∈ [1, 25].

The clustering performances of the proposed frameworks are shown in Fig. 2.8, Fig.

2.9, Fig. 2.12 and Fig. 2.13 for different values of α, β and λ. The performances of

semi-supervised classification task of both SMVMKL and RSMVMKL method have
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Figure 2.1: Clustering performance between SMVMKL, RSMVMKL and SC (uses
only one view) on Caltech, Reuters, MSRC-v1 and Animal with Attributes dataset.

been shown in Fig. 2.16 and Fig. 2.19 respectively for different values of α and β and

λ.

2.5.4 Computational Complexity

The computational complexity of both SMVMKL and RSMVMKL framework are

discussed here. If there are n number of instances then the computational complexity

of Algorithm 1 and Algorithm 2 is O(n3). If the given dataset has v number of views

and p number of kernel for each view then the complexity of kernel construction is

O(n2pv). But generally we have pv << n thus n2pv << n3 . Therefor, overall

complexity of both the Algorithm 1 and Algorithm 2 is O(n3).
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Figure 2.2: Clustering performance between SMVMKL, RSMVMKL and MVSC (uses
multiple views) on Animal with Attributes, MSRC-v1, Reuters and Caltech dataset.
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Figure 2.3: Comparison among the proposed SMVMKL and RSMVMKL methods
and MMSC on Animal with Attributes, Caltech101 and MSRC-v1 dataset.
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Figure 2.4: Comparison among the proposed SMVMKL and RSMVMKL methods
and Co-reg MVSC on Caltech, MSRC-v1 and Reuters dataset.
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Figure 2.6: Clustering convergence of SMVMKL framework on different datasets.
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Figure 2.7: Rate of change of similarity matrix for clustering task using SMVMKL.
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Figure 2.8: Clustering performance of SMVMKL framework on Caltech101 dataset
for different values of α and λ while β = 100.
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Figure 2.9: Clustering performance of SMVMKL framework on Caltech101 dataset
for different values of α and λ while β = 1000.
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(b) MSRC-v1
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(d) Caltech101

Figure 2.10: Clustering convergence of RSMVMKL framework on different datasets.
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(c) Reuters
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Figure 2.11: Rate of change of similarity matrix for clustering task using RSMVMKL
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(a) ACC (b) NMI

(c) PUR (d) No. of iteration

Figure 2.12: Clustering performance of RSMVMKL framework on Animal with At-
tributes dataset for different values of α and λ while β = 100.

(a) ACC (b) NMI

(c) PUR (d) No. of iteration

Figure 2.13: Clustering performance of RSMVMKL framework on Animal with At-
tributes dataset for different values of α and λ while β = 1000.
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(b) MSRC-v1

Figure 2.14: Semi-supervised classification ( when 50% labelled data is available)
convergence for proposed SMVMKL method on different datasets.
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(c) Reuters

Figure 2.15: Rate of change of similarity matrix while performing semi-supervised
classification task using SMVMKL framework.
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(a) β = 100 (b) β = 100

(c) β = 1000 (d) β = 1000

Figure 2.16: Semi-supervised classification performance of SMVMKL framework on
MSRC-v1 dataset for different values of α and λ while β = 100 and β = 1000.
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Figure 2.17: Semi-supervised classification (when 50 labelled data is available) con-
vergence for proposed RSMVMKL method on different datasets.
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Figure 2.18: Rate of change of similarity matrix while performing semi-supervised
classification task using RSMVMKL framework.

(a) β = 100 (b) β = 100

(c) β = 1000 (d) β = 1000

Figure 2.19: Semi-supervised classification performance of RSMVMKL framework on
Reuters dataset for different values of α and λ while β = 100 and β = 1000.
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2.6 Summary

In this chapter a novel SMVMKL framework has been proposed which performs the

unsupervised and semi supervised learning task based on the graph representation

of the dataset by using multiple kernels on multiple views. The weight assignment

to each kernel of each view is also done automatically without using any additional

weight assignment parameter. But this SMVMKL framework faces some problem

due to the presence of noises and data outliers in the dataset and it may degrade the

learning performances. Later, this issue is solved by using another novel framework

named RSMVKL. Various extensive experiments on different real-world datasets show

the effective and better performances of the proposed SMVMKL and RSMVMKL

framework than the performances of other existing methods.





Chapter 3

Low-rank Kernelized Graph-based

Clustering on Multiple Views

3.1 Introduction

Graph-based clustering [6] [62] is one of the most important learning tasks in the field

of machine learning and pattern recognition. To achieve a better clustering perfor-

mance, nonlinearity present in the dataset is considered while doing the clustering

task and it is done by introducing various kernel methods [50][8]. Later multiple

kernels learning [12][11] has been introduced in graph-based clustering to solve the

issue of appropriate kernel selection. But those kernel learning methods don’t con-

sider the noise present in the dataset and get affected by that noise. To solve this

issue, low-rank kernel optimization is incorporated in the proposed low-rank multi-

view multi-kernel graph-based clustering (LRMVMKC) framework that uses low-rank

kernel optimization using multiple kernels on multiple views. The main contributions

of this paper are the use of low-rank kernel optimization which makes the framework

less sensitive to the noise present in the dataset and the use of multiple kernels on

multiple views instead of a single view that provides more information about the
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dataset thus improving the clustering performances. The main contributions of the

proposed methods have been summarized as:

• a novel low-rank kernel optimization using multiple kernels on multiple views

and an appropriate weight assignment method to each kernel.

• Integration of kernel learning, graph construction and label learning thus achiev-

ing the optimal performances by negotiating between each other.

Several experiments have been performed on various real-world benchmark datasets

using the proposed LRMVMKC framework and it has been observed that the per-

formances of the proposed framework are better than other existing state-of-the-art

methods.

3.2 Methodology

Multiple features are extracted from a given dataset and each feature is considered as

a view. For each view multiple kernels are allocated. Now by using low-rank kernel

optimization, the optimal kernel and the optimal similarity matrix of the graph are

obtained. Proper weight assignment to each kernel of each view is also done by a

self-weighted algorithm.

3.2.1 Low-rank Kernelized Graph-based Clustering

Let X∈Rd×n is a given data matrix where the total number of available data samples

and the feature dimension are denoted by n and d respectively. S is the initial

similarity matrix or adjacency matrix of the given dataset. Now the optimal solution

of S can be learned from the following minimization problem:

minimize
S

‖X −XS‖2F + λ‖S‖2F

subject to S > 0.
(3.1)
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where λ is the trade-off parameter. To incorporate the kernel in the proposed frame-

work, we use the kernel trick, K(x, y) = φ(x)Tφ(y). Now Eq.(3.1) can be stated

as:

minimize
S

‖φ(x)− φ(x)S‖2F + λ‖S‖2F

subject to S > 0.
(3.2)

For any given matrix A, ‖A‖2F = Tr(ATA). Now using this property, Eq.(3.2) can be

written as:

minimize
S

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F

subject to S > 0.
(3.3)

where, K∈Rn×n is the kernel matrix. To make the proposed framework less sensitive

to the noise and data outliers present in the dataset, low-rank minimization of kernel

has been incorporated in the framework. Now Eq.(3.3) can be stated as following:

minimize
S,K

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F + ζ‖K‖?

subject to S > 0.

(3.4)

where, ‖K‖? is the nuclear norm of the kernel matrix K and ζ is a regularization

parameter. But the solution to this problem stated in Eq.(3.4) suffers from the choice

of kernel and also it uses only a single view of the dataset.

3.2.2 Low-rank Multi-view Multi-kernel Graph-based Clus-

tering

To solve this, multiple kernels on multiple views have been integrated with our pro-

posed method. The multiple views of a given dataset X with m number of clusters

are denoted by [X1, X2, · · · , Xv, · · · , Xq] where Xv∈Rdv×n and total number of avail-

able data samples and the feature dimension of vth view Xv are denoted by n and

dv respectively. To solve the issue of kernel selection, u number of kernels have been

assigned to each view. The proposed LRMVMKC method is framed depending on
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the following presumptions:

(i) each kernel of each view is a perturbed version of the consensus kernel

(ii) the closer the kernel to the consensus kernel, the larger weight will be assigned to

that kernel.

Using these assumptions, the optimal kernel from multiple kernels is learned from

the following minimization problem:

minimize
K

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F (3.5)

where,

Z(p,v) =
1

2‖ H(p,v) −K‖F
(3.6)

Here H(p,v) is the pth kernel of the vth view of the given dataset and Z(p,v) is the

weight assigned to H(p,v). It can be observed from Eq.(3.5) and Eq.(3.6) that no

extra parameter has been used for proper weight allotment of kernels. The proper

weight can be allocated to each kernel of each view by Eq.(3.6). Now uniting Eq.(3.4),

Eq.(3.5) and Eq.(3.6), the proposed LRMVMKC framework can be stated as:

minimize
S,K

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F + ζ‖K‖?

+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

subject to S > 0

(3.7)

where, β, λ and ζ are three regularization parameters.

The similarity matrix S has an important property [57]:

“The multiplicity m of the eigenvalue 0 of the Laplacian matrix L is equal to the

number of connected components in the graph associated with S.”

This property provides a constraint on S and that constraint is rank(L) = n − m.
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Now Eq.(3.7) can no be rewritten as:

minimize
S,K

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F + ζ‖K‖?

+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

subject to S > 0, rank(L) = n−m

(3.8)

Let ith smallest eigenvalue of L is σi(L). Because of the positive semi-definiteness

property of L, σi(L) > 0. Therefore
∑m

i=1 σi(L) = 0 will guarantee the constraint

rank(L) = n−m. As stated in Ky Fan’s Theorem [58]:

min
PTP=I

Tr(P TLP ) =
m∑
i=1

σi(L) (3.9)

where P∈Rn×m denotes the label or cluster indicator matrix. Now using Eq.(3.9),

Eq.(3.8) can be rewritten as:

minimize
S,P,K

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F + ζ‖K‖?

+ αTr
(
P TLP

)
+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

subject to S > 0, P TP = I

(3.10)

Where α is a regularization parameter. This model formulates the proposed LR-

MVMKC framework.

3.3 Optimization

The proposed framework stated by Eq.(3.10) is solved by an iterative algorithm. In

this iterative procedure, when one variable is updated then the rest of the variables
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are treated as a constant. One auxiliary variable has been introduced to make the

variable separable from each other and using that Eq.(3.10) can be stated as following:

minimize
S,P,K

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F + ζ‖W‖?

+ αTr
(
P TLP

)
+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

subject to S > 0, P TP = I, W = K

(3.11)

The corresponding augmented Laglangian function can be written as:

L(S,K, P,W, Y ) = Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F

+ ζ‖W‖? + αTr
(
P TLP

)
+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

+
µ

2
‖W −K +

Y

µ
‖2F

(3.12)

where µ denotes a penalty parameter and Y is the Lagrangian multipliers. Now all

the variables stated in Eq.(3.12) can be updated one by one alternatively.

(i) For updating S, Eq.(3.12) is written as:

minimize
S

Tr
(
K − 2KS + STKS

)
+ λ‖S‖2F

+ αTr
(
P TLP

)
subject to S > 0

(3.13)

An important equation of spectral analysis is:

∑
i,j

1

2
‖Pi,: − Pj,:‖22sij = Tr(P TLP ) (3.14)
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Now the problem stated in Eq.(3.13) can be solved for each ith column of S as:

− 2kisi + si
TKsi + λsTi si +

α

2
gTi si, (3.15)

where gi= [gi1, gi2, · · · , gin]T ∈Rn and gij = ‖Pi,:−Pj,:‖22. By setting the first derivative

of Eq.(3.15) with respect to si to zero,each sample of S is calculated by:

si = (λI +K)−1(ki − α

4
gi) (3.16)

(ii) To obtain the optimal kernel matrix K, Eq.(3.12) can be written as:

minimize
K

Tr
(
K − 2KS + STKS

)
+ β

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F

+
µ

2
‖W −K +

Y

µ
‖2F

(3.17)

From Eq.(3.17) the kernel matrix K is updated as:

K =
2ST − SST − I + 2β

∑q
v=1

∑u
p=1 Z(p,v)H

(p,v) + µW + Y

2β
∑q

v=1

∑u
p=1 Z(p,v) + µ

(3.18)

(iii) For updating W , Eq.(3.12) becomes:

minimize
W

ζ‖W‖? +
µ

2
‖W −K +

Y

µ
‖2F (3.19)

Let B =
(
K − Y

µ

)
∈Rn×n and SV D(B) = U.diag(σ).V T . Now the optimal W can be

obtained by:

W = U.diag

(
max(σ − ζ

µ
, 0)

)
.V T (3.20)
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(iv) For Updating the label matrix P , the problem becomes:

minimize
P

αTr(P TLP )

subject to P TP = I
(3.21)

If there are m number of classes, then m eigenvectors of L corresponding to the m

smallest eigenvalues will be the optimal solution of P .

The proposed algorithm for LRMVMKC framewrok has been stated in Algorithm 3.

Algorithm 3 : Proposed LRMVMKC algorithm

Input: Kernel for each view: {H(p,v)}, parameters α, β, λ, ζ and µ.
Output: Similarity matrix S with exact m connected components and optimal kernel
matrix K.
Initialization: S, K, W = K, Zp,v and Y
Repeat:

• update the ith column of S as per Eq.(3.16)
• calculate K using Eq.(3.18)
• calculate W using Eq.(3.20)
• update Z(p,v) by Eq.(3.6)
• update Lagrangian multiplier Y as:
Y = Y + µ(W −K)

• calculate P by solving Eq.(3.21) as the m smallest eigenvectors, correspond to
the m smallest eigenvalues of the Laplacian matrix L.

Until stopping criterion is met.

3.4 Experiment

To perform the proposed clustering task multiple kernels are needed. Twelve different

kernels consist of seven Gaussian kernels, one linear kernel and four polynomial kernels

are created for each view of a given dataset. Gaussian kernels are created by using:

K(y, z) = exp(−‖ y−z‖22/(td2max)), where maximum distance between data samples is

denoted by dmax and the values of t is chosen from the set: [0.01,0.05.0.1,1,10,50,100].

The 8th The linear kernel is of the form: K(y, z) = yT z. And the polynomial kernels

are of the form: K(y, z) = (a + yT z)b where a and b vary between {0, 1} and {2, 4}
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respectively.

3.4.1 Dataset

To show the excellent clustering task performed by the LRMVMKC method, dif-

ferent real-world benchmark datasets are used on which the clustering task of the

LRMVMKC framework is performed. Here, Animal with Attributes [37], MSRC-v1

[40], Yale [44], Reuters Multilingual Data [45] and Caltech101 [46] datasets are used.

As the LRMVMKC algorithm based on multi-view, different multiple views are ex-

tracted from all the datasets. All the detailed information of the datasets and their

views have been stated in section 1.5. And all the related information of the datasets

also stated in Table 3.1.

Table 3.1: Statistics of the datasets used for the experiment

dataset number of views Instances Classes
Animal with Attributes 3 100 10

MSRC-V1 3 210 7
Yale 3 165 15

REUTERS 5 180 6
Caltech101 6 241 5

3.4.2 Comparison Methods

The clustering performances of the proposed LRMVMKC framework on the above

mentioned datasets have been compared with different existing multi-view methods

and kernelized methods.

• KKM [8]: Kernel K-means method establishes the connection between the

K-means and spectral clustering algorithm and then perform the clustering

task using kernlized method thus incorporating the nonlinearity into the model.

Here, the KKM method is considered as the baseline for clustering performances.

• Co-train MVSC [20]: In a co-training approach for multi-view spectral clus-
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tering method, a graph is learned for each view and spectral clustering is per-

formed on each graph. The clustering in one view helps to improve the perfor-

mances of other views and vice-versa.

• Co-reg MVSC [21]: In a co-regularized multi-view spectral clustering ap-

proach, a cluster indicator matrix is learned where each sample belongs to the

same cluster for each view and it is done by co-regularizing the different clus-

tering hypothesis.

• SwMC [23]: In self-weighted multi-view clustering with multiple graphs method,

a common Laplacian rank constrained graph is obtained for each and every view

and the proper weight assignment to each view is done automatically.

• AMVL [63]: Auto-weighted multi-view learning method using multiple views

and the weight assignment to each view is done automatically. It performs the

clustering task and local structure learning task simultaneously and obtains a

optimal graph that can be directly partitioned into different clusters.

3.5 Result

The clustering performances of the proposed LRMVMKC have been performed on

different real-world datasets and they have been compared with other existing meth-

ods.

3.5.1 Performance Evaluation

Three evaluation metrics that have been used for evaluating the clustering perfor-

mances of the proposed LRMVMKC framework are accuracy (ACC), Normalized

Mutual Information (NMI) and Purity (PUR). The comparison of clustering perfor-

mances of the proposed LRMVMKC method with respect to other existing multi-view

and kernelized methods have been shown in Table 3.2. As clustering performances

of KKM method is considered as the baseline here, the clustering performances of
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Table 3.2: Clustering performance on different datasets for LRMVMKC framework

Animal with Attributes MSRC-v1 Yale Reuters Caltech-101

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

KKM(1) 0.2801 0.2360 0.2947 0.3445 0.2751 0.4081 0.8246 0.8975 0.8440 0.4040 0.1900 0.4187 0.4408 0.2123 0.4751

KKM(2) 0.2605 0.2164 0.2753 0.6934 0.6427 0.7201 0.7250 0.8017 0.7488 0.3837 0.1751 0.4013 0.3637 0.1313 0.4086

KKM(3) 0.2672 0.2095 0.2873 0.5150 0.4383 0.5423 0.5554 0.6204 0.5650 0.3869 0.1839 0.4013 0.5173 0.2608 0.5331

KKM(4) 0.3728 0.1711 0.3940 0.5539 0.4045 0.5836

KKM(5) 0.3799 0.1710 0.3597 0.6111 0.4485 0.6375

KKM(6) 0.5478 0.3211 0.5623

Co-train MVSC 0.2850 0.2534 0.3480 0.5924 0.5150 0.6433 0.9117 0.9378 0.9594 0.4167 0.2716 0.5111 0.6091 0.4488 0.6680

Co-reg MVSC 0.2570 0.2033 0.5190 0.4336 0.3753 0.5169 0.9145 0.9440 0.9678 0.4561 0.2857 0.5067 0.5855 0.4570 0.6502

MMSC 0.2787 0.2479 0.3677 0.6269 0.5951 0.6395 0.8751 0.9067 0.9437 0.4478 0.3170 0.4933 0.5232 0.4028 0.5245

SwMC 0.2200 0.1854 0.2200 0.6238 0.5669 0.6476 0.6850 0.7287 0.6700 0.2167 0.1152 0.2389 0.4979 0.2910 0.5104

AMVL 0.3040 0.2541 0.3110 0.7143 0.6957 0.7288 0.9631 0.9512 0.9674 0.4278 0.2794 0.4440 0.6266 0.4778 0.6473

LRMVMKC 0.3300 0.3016 0.3900 0.7381 0.6548 0.7381 0.9800 0.9719 0.9800 0.4944 0.3535 0.6000 0.6349 0.5218 0.6929

the LRMVMKC and the clustering performances of KKM method for each view of

the dataset are plotted in Fig. 3.1. Also, the performances of LRMCMKC and that

of others multi-view existing methods are plotted in Fig. 3.2. And from both the

the figure Fig. 3.1 and Fig. 3.2, it is easily observed that in most of the cases the

performances of the LRMVMKC are better than other existing methods. Now in

Fig. 3.3 it has been shown how the learning performance gets affected while using

different numbers of kernel and it is clearly observed from the figure that the learning

performance is best while using 10 or 12 number of kernels and the accuracy of the

performance gets reduced while using a very small number of kernel.

3.5.2 Convergence Analysis

One of the most important properties of an algorithm is its convergence. The con-

vergence of the LRMVMKC algorithm is shown in this section. In section 3.2, it has

been stated how the LRMVMKC framework has been built up and the mathematical

representation of the LRMVMKC framework is stated in Eq. 3.10. But it is observed

that Eq. 3.10 is not a jointly convex one. Therefore, the Eq. 3.10 is divided into

four different sub-problems. Each sub-problem is stated in Eq. 3.13, 3.17, 3.19 and

3.21 respectively where each sub-problem depends only on one variable while others

variables are considered as constant. These sub-problems are convex with respect to
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the respected variable and optimal solution is obtained by solving each problem which

converges to a global solution. It is also shown in Fig. 3.4 that for each dataset, the

LRMVMKC method always converges after a certain number of iteration.
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Figure 3.1: Clustering performance between LRMVMKC and KKM (uses only one
view) on Animal with Attributes, Yale, MSRC-v1 and REUTERS dataset.

3.5.3 Parameter Tuning and Sensitivity

The mathematical representation of the LRMVMKC framework is stated in Eq.

(3.10). To solve this problem, Lagrangian function is incorporated as per Eq. (3.12).

From Eq. (3.12) it is easy to see that LRMVMKC algorithm contains five regulariza-

tion parameters: α, β, γ, µ and ζ. Different values of these parameters may effect the

learning performances of LRMVMKC framework differently.In order to find the appro-

priate values of those regularization parameters for which the algorithm will give the

best learning performances, a grid search is performed where, α = [1e−5, 1e−4, 1e−3],

β = [10, 1000], γ ∈ [1, 100], ζ = [0.01, 0.1, 1] and µ = [10, 100].
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Figure 3.2: Clustering performance between LRMVMKC and MVSC (uses multiple
views) framework on Animal with Attributes, Caltech101, MSRC-v1 and REUTERS
dataset.

In Fig. 3.5, clustering performances of LRMVMKC is shown for different values

of α and ζ when β = 10, γ = 1 and µ = 10. In Fig. 3.6, clustering performances

of LRMVMKC is shown for different values of α and ζ when β = 10, γ = 100 and

µ = 100. From Fig. 3.5 and Fig. 3.6, it is observed that the clustering performances

doesn’t change much even if the values of γ and µ changes. In Fig. 3.7, clustering

performances of LRMVMKC is shown for different values of α and ζ when β =

1000, γ = 1 and µ = 10 and in Fig. 3.8, clustering performances of LRMVMKC

is shown for different values of α and ζ when β = 1000, γ = 100 and µ = 100.

So from Fig. 3.5, Fig. 3.6, Fig. 3.7 and Fig. 3.8, it is also observed that the

clustering performances of LRMVMKC doesn’t change much for different values of

β when γ and µ are kept constant. So from all these figures it can be concluded

that the performances of the LRMVMKC framework is very less sensitive to those

regularization parameters when their values are within a certain range.
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Figure 3.3: Change of the performance of LRMVMKC while performing the clustering
and semi-supervised classification task on different data sets.
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Figure 3.4: Clustering convergence of LRMVMKC framework on Animal with At-
tributes, MSRC-v1, Reuters and Caltech101 dataset.

3.5.4 Computational Complexity

The computational complexity of the LRMVMKC framework is discussed here. If

a dataset has n number of samples, then the computational complexity of kernel

construction for a view is O(n2). Now if the given dataset has v number of views
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Figure 3.5: Clustering performance of LRMVMKC framework on Caltech dataset for
different values of α and ζ while β = 10, γ = 1 and µ = 10.

and p number of kernel for each view then the total complexity of kernel construction

is O(n2pv). The similarity matrix S and the kernel matrix K are updated as per

Eq. 3.16 and Eq. 3.18 and the complexity of these are O(n3). To update W as per

Eq. 3.20, a SVD is performed and the complexity of SVD is O(n3). The coplexity

of updation of Y is O(n2). But generally in real world datasets, we have pv << n.

Therefor, overall complexity of the Algorithm 3 is O(n3).
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Figure 3.6: Clustering performance of LRMVMKC framework on Caltech dataset for
different values of α and ζ while β = 10, γ = 100 and µ = 100.
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Figure 3.7: Clustering performance of LRMVMKC framework on Caltech dataset for
different values of α and ζ while β = 1000, γ = 1 and µ = 10.
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Figure 3.8: Clustering performance of LRMVMKC framework on Caltech dataset for
different values of α and ζ while β = 1000, γ = 100 and µ = 100.
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3.6 Summary

In this chapter a novel low-rank multi-view multi-kernel graph-based clustering frame-

work is described which performs the clustering task based on the graph representa-

tion of the dataset by using multiple kernels on multiple views. One of the important

task of this method is to assign proper weight to each kernel of each view. The

weight assignment to each kernel of each view is also done automatically without us-

ing any additional weight assignment parameter. Then the optimal kernel is learned

by low-rank kernel minimization method that makes the proposed method less sensi-

tive to the noise present in the datasets. Various extensive experiments on different

real-world datasets show the effective and better performances of the proposed LR-

MVMKC framework than the performances of other existing methods.



Chapter 4

Kernelized Graph-based

Multi-view Learning on High

Dimensional Data

4.1 Introduction

There exists a large amount of data with high dimension and processing these high

dimensional data is a challenge. The high dimensional data carries a lot of noise

features which is detrimental for the clustering task. To solve this, some methods

are proposed in [64], [65]. But in these methods, the nonlinear relationships between

different data samples that may be present in the dataset are not considered. Also

all these methods use only a single view of a dataset. But In many applications

such as web page classification, video classification, surveillance systems, data and

information are collected using multiple views. Each view provides different partial

information about the dataset and a combination of these partial information helps

to improve the clustering performances. In [66], multiple views have been used for the

clustering of high dimensional data but here also the nonlinear relationships between
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different data samples are not considered.

One of the ways to deal with the redundant features present in high dimensional

dataset is to reduce the dimensionality of the data. There are various methods for

dimensionality reduction [67], [68]. But these methods also don’t consider the non-

linear relationship between different data samples. And this issue is solved by kernel

principal component analysis (KPCA) [69].

A novel multi-view kernelized graph-based clustering on high dimensional data

(MVKGC) framework is presented in this chapter which performs the clustering task

on the high dimensional dataset and simultaneously reduces the dimensionality of

the dataset thus preventing the clustering performances to get affected from the

redundant features present in the dataset. The main contribution of this chapter is

the application of the kernel method while performing clustering task and dimension

reduction on high dimensional data which enhances the clustering performances. In

summary, the important contributions of this work are as follows:

• a novel kernelized graph-based clustering for high dimensional data using di-

mensionality reduction technique.

• use of multiple views and automatic weight assignments to each view as per

their contribution.

• integration of dimensionality reduction, graph construction, kernel learning and

label learning.

4.2 Methodology

To incorporate multiple views in the framework, multiple feature sets are extracted

from the given dataset and each feature set is considered as a view. As the dimension

of the data is high, the dimension reduction task is performed for each view by

KPCA method which also includes the kernel trick into the proposed framework. The
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proper weight assignment to a particular view is also learned automatically without

introducing any weight assignment parameter.

4.2.1 Kernelized Graph-based Clustering for High Dimen-

sional Data

There is a given dataset X∈Rd×n with m number of clusters where n is the total

number of samples in the dataset and d is the feature dimension. If S is the initially

given similarity matrix for the given dataset where S = ST∈Rn×n then the optimal

similarity matrix can be learnt from the following minimization problem:

minimize
S

‖X −XS‖2F + λ‖S‖2F

subject to S > 0.
(4.1)

where λ is a regularization parameter. Now if X is a high dimensional dataset,

then there may exist many redundant features in the dataset which may degrade the

learning performance. To solve this issue, KPCA [69] is incorporated in the proposed

framework. By using KPCA, the high dimensional data X can be represented in a

low dimensional space as X̂ and it can be written as:

X̂ = W TK (4.2)

where, K∈Rn×n, X̂∈Rr×n and r (r�d) is the reduced dimension of X. K is the

kernel matrix of the given dataset X and it can obtained by using the kernel trick

K(x, y) = φ(x)Tφ(y). W∈Rn×r is the top r eigenvectors of K. Now using Eq. (4.2),

Eq. (4.1) can be rewritten as:

minimize
S

‖W TK −W TKS‖2F + λ‖S‖2F

subject to S > 0.
(4.3)
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4.2.2 Multi-view Kernelized Graph-based Clustering for High

Dimensional Data

If the given dataset X has multiple views denoted by X1, X2, · · · , Xv, · · ·Xq, where

Xv∈Rdv×n and total number of available data samples and the feature dimension of

vth view are denoted by n and dv respectively. Kv∈Rn×n is the kernel matrix for

the vth view, Xv. Now using multiple views instead of single view, Eq. (4.3) can be

expressed as:

minimize
S

q∑
v=1

(hv)
γ‖W T

v Kv −W T
v KvS‖2F + λ‖S‖2F

subject to S > 0, ĥTv 1 = 1, 0 6 hv 6 1

(4.4)

where,Wv∈Rr×n is the top l eigenvectors of Kv, hv is the weight that has been assigned

to the vth view Xv and ĥv= [h1, h2, · · · , hv, · · · , hq]
T ∈Rq×1. There exists an extra

parameter γ which is required for the smooth weight assignments to each view. But

to make the weight assignment a parameter free method, a different framework of the

following form has been proposed.

minimize
S

q∑
v=1

‖W T
v Kv −W T

v KvS‖F + λ‖S‖2F

subject to S > 0

(4.5)

Where, no weight parameter ha been defined explicitly. The Lagrangian function of

Eq. (4.5) can be expressed as:

minimize
S

q∑
v=1

‖W T
v Kv −W T

v KvS‖F + λ‖S‖2F + L(Λ, S) (4.6)

where L(Λ, S) has been obtained from the constraint term and Λ is the Lagrange

multiplier. Now by equating the first derivative of Eq. (4.6) with respect to S to
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zero:
q∑

v=1

Zv
δ‖W T

v Kv −W T
v KvS‖2F

δS
+ λ

δ‖S‖2F
δS

+
δL(Λ, S)

δS
= 0 (4.7)

Where,

Zv =
1

2‖K −W T
v KvS‖F

(4.8)

As Zv depends on S, direct solution of Eq. (4.7) is not possible. But when Zv is

considered as stationary then Eq. (4.7) can be written as:

minimize
S

q∑
v=1

Zv‖W T
v Kv −W T

v KvS‖2F + λ‖S‖2F

subject to S > 0.

(4.9)

In spectral analysis, L =
(
D − S+ST

2

)
∈Rn×n is called as Laplacian matrix where

D∈Rn×n is called degree matrix. D is a diagonal matrix and its ith diagonal element

is
∑

j(sij+sji)

2
. The similarity matrix S follows an important property [57]:

“The multiplicity m of the eigenvalue 0 of the Laplacian matrix L is equal to the

number of connected components in the graph associated with S.”

As the given dataset has m number of clusters, then the similarity matrix S will have

m number of connected components. So the above mentioned property provides a

constraint on S and that constraint is rank(L) = n − m. Now Eq. (4.9) can be

rewritten as:

minimize
S

q∑
v=1

Zv‖W T
v Kv −W T

v KvS‖2F + λ‖S‖2F

subject to S > 0, rank(L) = n−m

(4.10)

If σi(L) is the ith smallest eigenvalues of Laplacian matrix L then σi(L) > 0 as L is

positive semi-definite matrix. Therefore
∑m

i=1 σi(L) = 0 will guarantee the constraint

rank(L) = n−m. As per Ky Fan’s Theorem [58]:

min
PTP=I

Tr(P TLP ) =
m∑
i=1

σi(L) (4.11)
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where, P∈Rn×m is a label indicator matrix. Now Eq. (4.10) can be written as:

minimize
S,P

q∑
v=1

Zv‖W T
v Kv −W T

v KvS‖2F + λ‖S‖2F

+ αTr(P TLP )

subject to S > 0, P TP = I

(4.12)

where, α is a regularization parameter. We know that for any matrix N , ‖N‖2F =

Tr(NTN). Using this Eq. (4.12) can be expressed as:

minimize
S,P

q∑
v=1

ZvTr
(
M (v) − 2M (v)S + STM (v)S

)
+ λ‖S‖2F + αTr

(
P TLP

)
subject to S > 0, P TP = I

(4.13)

where,

M (v)=
[
m

(v)
1 ,m

(v)
2 , · · ·m(v)

n

]
=
(
WT

v Kv

)T (
WT

v Kv

)
∈Rn×n (4.14)

Zv =
1

2
√
Tr (M (v) − 2M (v)S + STM (v)S)

(4.15)

The proposed MVKGC framework is formulated by the above mentioned minimizing

problem.

4.3 Optimization

An iterative algorithm is presented in this section to solve the optimization problem

stated in Eq. (4.13). In this iterative procedure, one variable is updated while keeping

other variable constant. The algorithm has two parts: clustering and semi supervised

classification.
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4.3.1 Clustering

For simplicity, the problem defined in Eq. (4.13) can be divided into two sub-problems

and those two sub-problems can be solved iteratively. Every sub-problem is solved

with respect to only one variable while the other variable is considered as a constant.

(i) while updating S, P is kept fixed and Eq. (4.13) can be written as:

minimize
S

q∑
v=1

ZvTr
(
−2M (v)S + STM (v)S

)
+ λ‖S‖2F + αTr

(
P TLP

)
subject to S > 0

(4.16)

An important equation of spectral analysis is:

∑
ij

1

2
‖Pi,: − Pj,:‖22sij = Tr

(
P TLP

)
(4.17)

Now the problem defined in Eq.(4.16) can be solved for each ith column (si) of the

similarity matrix S as:

q∑
v=1

Zv

(
−2M

(v)
i si + sTi M

(v)si

)
+ λsTi si +

α

2
gTi si (4.18)

where gi= [gi1, gi2, · · · , gin]T ∈Rn and gij = ‖Pi,:−Pj,:‖22. Now setting the first deriva-

tive of Eq. (4.18) with respect to si to be zero, we get:

si =

(
q∑

v=1

ZvM
(v) + λI

)−1( q∑
v=1

Zvm
(v)
i −

α

4
gi

)
(4.19)

Finally, we get the updated similarity matrix as:

S = [s1, s2, · · · , sn] (4.20)
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(ii) To update of P while keeping S fixed, Eq. (4.13) can be written as:

minimize
P

αTr
(
P TLP

)
subject to P TP = I

(4.21)

If there are m number of clusters, then the solution P is m eigenvectors of L corre-

sponding to the m smallest eigenvalues.

At each iteration, after updating S and P , Zv is updated as per Eq. (4.15).

4.3.2 Semi-supervised Classification

Graph construction and label inference are two important stages of semi-supervised

classification in graph-based learning. Both these stages are unified with dimension

reduction and kernel method in the MVKGC framework. Using the labelled samples,

the graph is constructed and then by label inference, the unknown labels are predicted.

The MVKGC framework for semi-supervised classification is given as:

minimize
S,P

q∑
v=1

ZvTr
(
M (v) − 2M (v)S + STM (v)S

)
+ λ‖S‖2F + αTr

(
P TLP

)
subject to S > 0, P TP = I, Pl = Yl

(4.22)

where l is the total number of labelled points, and Yl = [y1, y2, y3, · · · , yi, · · · , yl]T ∈Rl×c

is the labelled indicator matrix where yi∈Rc is the labelled indicator vector of the

ith sample. When yij = 1, the ith sample belongs to the jth class. Without loss of

generality, the data points are divided in such a way that the first l data points are

labelled and rest of the u data points are unlabelled, such that l + u = n and n is

the total number of data points. Now the Laplacian matrix L and and class indicator

matrix P can be written as a block matrix.:
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L =

 Lll Llu

Lul Luu

 and P =

 Pl

Pu

 (4.23)

where, Pl is the labelled indicator matrix and Pu is the unlabelled indicator ma-

trix. Now the updated S from Eq. (4.22) can be obtained using the same iterative

procedure that is used to get optimal S from Eq. (4.13), but the difference lies in up-

dating P . The updated class indicator matrix P is obtained by solving the following

minimization problem:

minimize
P

Tr(P TLP )

subject to Pl = Yl

(4.24)

By setting the first derivative of Eq. (4.24) with respect to P equal to zero, we get: Lll Llu

Lul Luu

 Yl

Pu

 = 0 (4.25)

By solving Eq. (4.25) we get,

Pu = −L−1uuLulYl (4.26)

If ijth element of P is denoted as pij, then the final class labels of the unlabelled data

points can be assigned by the following decision rule:

yi = arg max
j

pij (4.27)

∀i = l + 1, l + 2, ..., n. ∀j = 1, 2, 3, ..., c
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Algorithm 4 : Proposed MVKGC framework

Input: Kernel matrices for each view: {Kv}qv=1, parameters α and λ, Reduced fea-
ture dimension r.
Output:
Clustering: Similarity matrix S with exact m connected components and label indi-
cator matrix P .
Classification: The label matrix P for all data points.
Initialization: S, Zv
Repeat:

• update the ith column of S as per Eq. (4.19)
• calculate P by solving Eq. (4.21) as the m smallest eigenvectors, correspond to

the m smallest eigenvalues of the Laplacian matrix L.
• update Zv by Eq. (4.15)

Until stopping criterion is met.
• Classification: assign the class label to the unlabelled points by Eq. (4.27)

4.4 Experiment

Several experiments are performed on the MVKGC framework to validate its clus-

tering and semi-supervised classification performances. As it it is a multi-view based

learning framework, different multiple features are extracted from the dataset at first.

Then a kernel is assigned to each and every view. Here for the experiment a Gaussian

kernel of the form: K(y, z) = exp(−‖ y − z‖22/(d2max)), where the maximum distance

between samples is dmax, is assigned to each view. The semi-supervised classification

performances of MVKGC is validated when different percentages of labelled data is

available. For the experiment, 10%, 30%, and 50% of labelled data are considered.

4.4.1 Dataset

To show the excellent learning task performed by the MVKGC method, different

real-world benchmark datasets are used on which the learning tasks of the MVKGC

framework are performed. Here, Animal with Attributes [37], MSRC-v1 [40] and

Caltech101 [46] datasets are used. From these datasets, multiple features which are

high dimensional are extracted. All the details information of the datasets is already
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Table 4.1: Statistics of the datasets used for the experiment

dataset Animal with Attributes MSRC-v1 Caltech101

Feature
(Dimension)

Color Histogram
(2688)

GIST
(512)

CENTRIST
(254)

Local Self Similarity
(2000)

HOG
(35100)

HOG
(1984)

PyramidHOG
(252)

GIST
(512)
LBP
(928)

No. of Views 3 2 4
Instances 100 210 241

No. of Class 10 7 5

stated in section 1.5. And all the related feature information information of the

datasets is also stated in Table 4.1.

4.4.2 Comparison Methods

The learning performances of the proposed MVKGC framework on the above men-

tioned datasets have been compared with different existing methods.

• KKM [8]: Kernel K-means method establishes the connection between the

K-means and spectral clustering algorithm and then perform the clustering

task using kernlized method thus incorporating the nonlinearity into the model.

Here, the KKM method is considered as the baseline for clustering performances.

• MMSC [41]: Multi-modal spectral clustering method learns a Laplacian matrix

that is shared commonly by each and every modal of the dataset. Non-negative

relaxation is also used to improve clustering performances.

• DEKM [70] Discriminatively embedded K-means embeds the synchronous learn-

ing of multiple discriminative subspaces into multi- view K-Means clustering to

construct a unified framework, and adaptively control the inter co-ordinations

between these subspaces simultaneously.
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• RDEKM [71] Re-weighted discriminatively embedded K-means is an unsuper-

vised optimization scheme, which utilizes iterative re-weighted least squares to

solve least absolute residual and adaptively controls the distribution of mul-

tiple weights in a re-weighted manner only based on its own low-dimensional

subspaces and a common clustering indicator matrix.

• RMKMC [19] Robust multi-view K-means clustering is a novel robust large-

scale multi-view K-means clustering approach, which can be easily parallelized

and performed on multi-core processors for big visual data clustering.

• LGC [25] Learning with local and global consistency is a basic semi-supervised

classification method which designs a classifying function which is sufficiently

smooth with respect to the intrinsic structure collectively revealed by known

labeled and unlabeled points. It is a single view method.

• MLAN [27]: Multi-view learning with adaptive neighbor method learns an

optimal graph for each view by learning the local structure of the graph and

the optimal graph can be partitioned into specific clusters. Here also the ideal

weight assignment to each view is done automatically.

• AMGL [22]: Auto-weighted multiple graph learning method learns an optimal

graph for each view and automatic weight assignment to each view is also done.

The objective function of AMGL for semi-supervised classification is a convex

function thus obtaining the globally optimal result.

4.5 Results

To verify the effectiveness of the proposed MVKGC framework, both the clustering

and semi-supervised classification task are conducted on different datasets and the

results are promising.
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Table 4.2: Clustering performances on different datasets for MVKGC framework

Methods MSRC-v1 Animal with Attributes Caltech101

Evaluation

Metric
ACC NMI PUR ACC NMI PUR ACC NMI PUR

KKM(1) 0.6974 0.6427 0.7201 0.2801 0.2360 0.2947 0.5173 0.2608 0.5331

KKM(2) 0.5150 0.4383 0.5423 0.2605 0.2164 0.2753 0.5539 0.4045 0.5836

KKM(3) 0.2672 0.2095 0.2873 0.6111 0.4485 0.6375

KKM(4) 0.5478 0.3211 0.5623

MMSC 0.5133 0.3554 0.5352 0.2190 0.1683 0.3847 0.4044 0.2295 0.4349

DEKM 0.5048 0.3687 0.5905 0.2100 0.1612 0.4856 0.5815 0.3481 0.7052

RDEKM 0.5619 0.4918 0.6439 0.2400 0.2017 0.3700 0.6017 0.3453 0.7055

RMKMC 0.6905 0.6293 0.7000 0.2517 0.2183 0.4000 0.5602 0.3804 0.6432

MVKGC 0.7729 0.7070 0.8495 0.2900 0.2361 0.5950 0.6390 0.4293 0.7386

Table 4.3: Semi-supervised classification performances on different datasets for
MVKGC framework

dataset
Animal with
Attributes

MSRC-v1 Caltech101

Evaluation
Metric

ACC ACC ACC

Labelled
Rate

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

LGC(1) 0.1839 0.2238 0.2413 0.7415 0.8174 0.8395 0.4770 0.5447 0.5675
LGC(2) 0.1849 0.2510 0.2811 0.5190 0.5952 0.6429 0.6222 0.6623 0.6870
LGC(3) 0.1682 0.1786 0.1849 0.6144 0.6451 0.6583
LGC(4) 0.5221 0.5535 0.5718
MLAN 0.2133 0.2571 0.2850 0.6508 0.7347 0.7810 0.6870 0.7295 0.7479
AMGL 0.1556 0.2057 0.2200 0.8071 0.8694 0.9095 0.6777 0.7297 0.7598

MVKGC 0.2167 0.2629 0.3010 0.8135 0.8873 0.9229 0.6974 0.8116 0.8724

4.5.1 Performance Evaluation

Accuracy (ACC), Normalized Mutual Information (NMI) and Purity (PUR) are three

evaluation metrics that are used for evaluating the performances of clustering and

semi-supervised classification performances of the proposed MVKGC framework. The

comparison of clustering performances and semi-supervised learning performances of

the proposed MVKGC method with respect to other existing multi-view methods

have been shown in Table 4.2 and Table 4.3 respectively. As clustering performances
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Figure 4.1: Clustering performances between MVKGC and KKM (uses only one view)
on Animal with Attributes, Caltech101 and MSRC-v1 dataset.

of KKM method is considered as the baseline here, the clustering performances of

the MVKGC and the clustering performances of KKM method for each view of the

dataset are plotted in Fig. 4.1. The clustering performances of the MVKGC frame-

work and the clustering performances of some other existing multi-view methods are

plotted in Fig. 4.2. It is easy to observe that the clustering performances of MVKGC

framework is better than that of the KKM method and other multi-view methods.

As the proposed MVKGC framework includes the dimension reduction of feature,

the accuracy of its learning performances depends on the dimension of the selected

features. It is observed from Fig. 4.3 and Fig. 4.4 that the clustering accuracy and

semi-supervised classification accuracy starts to increase with the increasing dimen-

sion of feature but after a certain number of dimension the learning accuracy saturates

or it starts to degrade.
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Figure 4.2: Clustering performances between MVKGC and different MVSC methods
(uses multiple views) on Animal with Attributes, Caltech101 and MSRC-v1 dataset.
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Figure 4.3: Clustering accuracy on Animal with Attributes, Caltech101 and MSRC-v1
datasets with different dimension of features.
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Figure 4.4: Semi-supervised classification accuracy on Animal with Attributes, Cal-
tech101 and MSRC-v1 datasets with different dimension of features.

4.5.2 Parameter Tuning and Sensitivity

The proposed MVKGC algorithm contains two regularization parameters: α and λ. In

order to find the right combinations of the regularization parameters for the algorithm

to give the best performances, a grid search has been performed. The parameters are

observed to lie in the range: α ∈ [1e − 6, 1e − 5, 1e − 4, 1e − 3] and λ ∈ [0.1, 1, 10].

The clustering performances and semi-supervised classification performances of the

proposed MVKGC framework for different values of α and λ are shown in Fig. 4.5

and in Fig. 4.6 respectively. From both the figure it is easily observed that learning

performances of MVKGC method is not much sensitive to different values of α and

λ, when they are in the above mentioned range.
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(a) ACC (b) NMI

(c) PUR

Figure 4.5: Clustering performance of MVKGC framework on Animal with Attributes
dataset for different values of α and λ.

(a) Labelled rate=30% (b) Labelled rate=50%

Figure 4.6: Semi-supervised classification performance of MVKGC framework on
Animal with Attributes dataset for different values of α and λ when 30% and 50%
labelled data are available.

4.5.3 Convergence Analysis

The convergence of the proposed MVKGC algorithm is described in this section. The

lemma, introduced in [72], has been used to prove the convergence of the proposed

algorithm.
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Lemma 4.1 For any two positive numbers a and b, the following inequality holds:

a− a2

2b
6 b− b2

2b
(4.28)

Theorem 1 In each iteration, the updated similarity matrix S will reduce the the

objective value of the minimizing problem stated in (4.5) until convergence.

Proof: If S̃ is the updated version of S at each iteration, then the following

inequality can be written:

∑
v

‖W T
v Kv −W T

v KvS̃‖2F
2‖W T

v Kv −W T
v KvS‖F

+ ‖S̃‖2F

6
∑
v

‖W T
v Kv −W T

v KvS‖2F
2‖W T

v Kv −W T
v KvS‖F

+ ‖S‖2F

(4.29)

According to Lemma 4.1, the following can be written:

∑
v

‖W T
v Kv −W T

v KvS̃‖F −
∑
v

‖W T
v Kv −W T

v KvS̃‖2F
2‖W T

v Kv −W T
v KvS‖F

6
∑
v

‖W T
v Kv −W T

v KvS‖F −
∑
v

‖W T
v Kv −W T

v KvS‖2F
2‖W T

v Kv −W T
v KvS‖F

(4.30)

Now by adding (4.29) and (4.30) we get,

∑
v

‖W T
v Kv −W T

v KvS̃‖F + ‖S̃‖2F

6
∑
v

‖W T
v Kv −W T

v KvS‖F + ‖S‖2F
(4.31)

Thus, the proposed iterative algorithm will decrease the objective value of (4.5) mono-

tonically.

It is shown in Fig. 4.7 and 4.9 that while running the proposed MVKGC algorithm,

the value of the objective function is decreasing monotonically with each iteration

while performing both the clustering and semi-supervised classification task.
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Figure 4.7: Clustering convergence of MVKGC framework on MSRC-v1 and Cal-
tech101 dataset.

It is also shown in Fig. 4.8 and Fig. 4.10 that for both clustering and semi-

supervised classification task, the rate of change of the simlilarity matrix (S) converges

to a very small value after a certain number of iteration and after that even if the

proposed algorithm is run, the performance remains almost same.
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Figure 4.8: Rate of change of similarity matrix for clustering task on different data
sets.
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Figure 4.9: Semi-supervised classification convergence of MVKGC framework on
MSRC-v1 and Caltech101 dataset.
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Figure 4.10: Rate of change of similarity matrix for semi-supervised classification task
on different data sets.

4.6 Summary

It is a challenging task to deal with high dimensional data along with multiple views.

There may exist many redundant feature in high dimensional data which may af-

fect the performances of the learning task. So it is important to get rid of those

redundant features to achieve a better learning performances. This work proposes
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a novel MVKGC framework that uses kernel principal component analysis (KPCA)

to reduce the dimension of the high dimensional feature, thus reducing the effect

of redundant feature in the learning task and also the kernel method considers the

nonlinearity present in the dataset, thus improving the learning performances. The

proposed MVKGC framework also uses multiple views where each view gives different

partial information and combining them a better learning performances is achieved.

One of the most important issues while using multiple views is proper weight assign-

ment to each view according to their importance. It is also done automatically in the

proposed method without introducing any extra weight assignment parameter. The

extensive experiments on different real-world benchmark datasets show the efficient

performances of the proposed MVKGC framework.





Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this thesis, four novel graph-based learning frameworks have been proposed. One of

the difficulties in graph-based learning is to use multiple views and multiple kernel to-

gether and their proper weight assignment. In chapter 2, a novel graph-based learning

framework named SMVMKL has been proposed which incorporates the use of both

the multiple views and multiple kernel and also the proper weight is assigned to each

kernel of each view. And it is easily observed from various experiments on different

datasets that the performance of the proposed SMVMKL framework is better than

other existing methods that use only a single view. But SMVMKL framework suffers

from the noise that may present in the data. To solve this issue, two different frame-

works have been proposed. In chapter 2, one robust framework named RSMVMKL

framework has been presented which uses l2,1 norm to get rid of the noise present

in the data. To improve the learning performance, both the use of multiple views

and multiple kernel has been incorporated in the proposed framework and the proper

weight assignment is done automatically. And it is observed from several experiments

that the performance of RSMVMKL is better than the SMVMKL framework. In
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chapter 3, another robust multi-view multiple kernel framework named LRMVMKC

framework has been presented where instead of using l2,1 norm, a low-rank kernel

optimization method has been incorporated into the framework to overcome the issue

of the noisy data. And the performance of LRMVMKC framework is even better

than that of RSMVMKL. In chapter 4, a graph-based learning framework for high

dimensional data has been explained. Presence of redundant features in high dimen-

sional data affects the learning the performance of graph-based framework. To solve

this issue of curse of dimensionality, a novel graph-based learning framework for high

dimensional data named MVKGC has been proposed which incorporates the KPCA

method into the framework thus improving the learning performance.

5.2 Future Works

In the proposed MVKGC framework, only a single kernel has been used. Later, the

performance can be further improved by using multiple kernel instead of single kernel

and the framework can also be made more robust to the noise.

Computational complexity of SMVMKL and RSMVMKL framework is O(n3). If

the dataset gets larger then the time required for the computation gets higher. So

finding a way to reduce the computation time is a concern.

These works can also be shifted in graph neural network where neural network

structure is applied on the graph structure of the data.



Appendix A

A.1 Incorporation of kernel trick

minimize
S

‖φ(X)− φ(X)S‖2F + λ‖S‖2F

subject to S > 0.

We know that, if A∈Rm×n is a real valued matrix then ‖A‖2F = Tr(ATA). Using this

relationship we can write:

‖φ(X)− φ(X)S‖2F = Tr
[(
φ(X)− φ(X)S

)T (
φ(X)− φ(X)S

)]
= Tr

[
φT (X)φ(X)− φT (X)φ(X)S − STφT (X)φ(X) + STφT (X)φ(X)S

]
= Tr

[
K − 2KS + STKS

]
Now putting this value in the above equation we get,

minimize
S

Tr(K − 2KS + STKS) + λ‖S‖2F

subject to S > 0.
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A.2 Self-weighted kernel learning algorithm from

multiple kernel of multiple views

If we have total q number of views and for each view we have u number of kernel then

we can learn the optimal kernel matrix as following:

minimize
K

q∑
v=1

u∑
p=1

w(p,v)‖ H(p,v) −K‖2F + γ‖ W‖22

subject to w(p,v) ≥ 0, (1u)TW (1q) = 1

where, W∈Ru×q and the (p, v)th element of W is wp,v and 1r is a vector of size r with

all of its element being 1.

So, the value of w(p,v) is heavily dependent on the value of γ. To get rid of this

parameter, we follow [1] and present a formulation that induces a self-conducted

weight learning. The proposed objective is:

minimize
K

q∑
v=1

u∑
p=1

‖ H(p,v) −K‖F

Now, taking the derivative of this equation with respect to K and setting it to be

zero:
q∑

v=1

Z(p,v)
δH(p,v) −K‖2F

δK
= 0

where,

Z(p,v) =
1

2‖ H(p,v) −K‖F
It is obvious that w(p,v) is dependent on K. But if we set w(p,v) stationary then we

can write the minimization as following:

minimize
K

q∑
v=1

u∑
p=1

Z(p,v)‖ H(p,v) −K‖2F
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A.3 Cost function development of RSMVMKL

Given X∈Rd×n and S∈Rn×n, we can write:

∥∥∥X −XS∥∥∥
2,1

=
n∑
i=1

∥∥∥(X −XS)i

∥∥∥
2

where, (X −XS)i is the ith column of (X −XS).

Now assume that,

X =


x11 x12

x21 x22

x31 x32

 and S =

s11 s12

s21 s22


Now we can write:

(X −XS) =


x11 x12

x21 x22

x31 x32

−


(x11s11 + x12s21) (x11s12 + x12s22)

(x21s11 + x22s21) (x21s12 + x22s22)

(x31s11 + x32s21) (x31s22 + x32s22)



(X −XS) =


(x11 − x11s11 − x12s21) (x12 − x11s12 − x12s22)
(x21 − x21s11 − x22s21) (x22 − x21s12 − x22s22)
(x31 − x31s11 − x32s21) (x32 − x31s22 − x32s22)


Now taking the 1st column of (X −XS),

(X −XS)1 =


(x11 − x11s11 − x12s21)
(x21 − x21s11 − x22s21)
(x31 − x31s11 − x32s21)


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(X −XS)1 =


(x11 − x11s11 − x12s21)
(x21 − x21s11 − x22s21)
(x31 − x31s11 − x32s21)



=


x11

x21

x31

−


(x11s11 + x12s21)

(x21s11 + x22s21)

(x31s11 + x32s21)



=


x11

x21

x31

−

x11 x12

x21 x22

x31 x32


s11
s21


= (X1 −XS1)

Therefore, we can conclude that:

(X −XS)i = (Xi −XSi) for all i

Now we can calculate:

∥∥∥(X −XS)i

∥∥∥2
2

= (X −XS)Ti (X −XS)i = (Xi −XSi)T (Xi −XSi)

Now using the kernel mapping function φ, we can write:

∥∥∥(φ(X)− φ(X)S)i

∥∥∥2
2

=
(
φ(Xi)− φ(X)Si

)T(
φ(Xi)− φ(X)Si

)
= φ(Xi)

Tφ(Xi)− φ(Xi)
Tφ(X)Si − STi φ(X)Tφ(Xi) + STi φ(X)Tφ(X)Si

= Kii − 2KiSi + STi KSi

where, K is gram matrix or kernel matrix, Ki is the ith row of K.
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Therefore, we can express the l2,1-norm component of the cost function as following:

∥∥∥φ(X)− φ(X)S
∥∥∥
2,1

=
n∑
i=1

∥∥∥(φ(X)− φ(X)S
)
i

∥∥∥
2

=
n∑
i=1

√
Kii − 2KiSi + STi KSi

A.4 What is nuclear norm of a matrix and why it

is a convex envelope of the rank of the matrix?

For a given matrix A∈Rm×n, the nuclear norm of A is:

‖A‖? = trace
(√

AHA
)

=

min(m,n)∑
i=1

σi(A)

where σi(A) is the ith singular value of A.

Nuclear norm of A is a convex envelope of the rank function rank(A).

Theorem A.1 On the set S =
{
X∈Rm×n

∣∣∣‖X‖ ≤ 1
}
, the convex envelope of the

function φ(X) = Rank(X) is φenv(X) = ‖X‖? =
∑min(m,n)

i=1 σi(X).

Proof: Now, we follow [73] and prove the Theorem A.1 using the notion of conjugate

function. The conjugate function f ? of a function f : C → R, where C ⊆ Rn, is define

as:

f ?(y) = sup
{
〈y, x〉 − f(x)

∣∣∣x∈C}
where, 〈y, x〉 denotes the inner product in Rn. The basic result of the convex analysis

is that the conjugate of conjugate, f ??, is the convex envelope of the function f given

some technical conditions hold.

Part 1. Computing φ?: The conjugate of rank function φ, on the set of matrices
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with spectral norm less than or equal to one, is

φ?(Y ) = sup
‖X‖≤1

(
trace(Y TX)− φ(X)

)
where, 〈y, x〉 = trace(Y TX) is the inner product in Rm×n. Let q = min{m,n}. By

von Neumann’s theorem [74],

trace(Y TX) ≤
q∑
i=1

σi(X)σi(Y )

where, σi(X) denotes the ith largest singular values of X. Given X, the above in-

equality is achieved if UX and VX are chosen equal to UY and VY , respectively, where

X = UXΣXVX and Y = UY ΣY VY are the SVDs of X and Y . Now, we can write:

φ?(Y ) = sup
‖X‖≤1

( q∑
i=1

σi(X)σi(Y )−Rank(X)
)

If, X = 0 then we have φ?(Y ) = 0 for all Y . If Rank(X) = r,1 ≤ r ≤ q then φ?(Y )

can be expressed as:

φ?(Y ) = max
{

0, σ1(Y )− 1, · · · ,
r∑
i=1

σi(Y )− r, · · · ,
q∑
i=1

σi(Y )− q
}

From the above expression, we can conclude that:

φ?(Y ) =

q∑
i=1

(
σi(Y )− 1

)
+

where, a+ denotes the positive part of a, i.e., a+ = max(a, 0).

Part 2. Computing φ??: Now we find the conjugate of φ?, defined as:

φ??(Z) = sup
Y

(
trace(ZTY )− φ?(Y )

)
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for all Z∈Cm×n. As before, we choose UY = UZ and VY = VZ to get

φ??(Z) = sup
Y

( q∑
i=1

σi(Z)σi(Y )− φ?(Y )
)

Now if ‖Z‖ ≥ 1 then we can choose σ1(Y ) large enough so that φ??(Z)→∞.

Now let, ‖Z‖ ≤ 1. If ‖Y ‖ ≤ 1, then φ?(Y ) = 0 and the supremum is achieved for

σi = 1, i = 1, 2, · · · , q and we get:

φ??(Z) =

q∑
i=1

σi(Z) = ‖Z‖?

Now, if ‖Y ‖ ≥ 1, we can show that the argument of the sup is always smaller than the

value given above. By adding and subtracting the term
∑q

i=1 σi(Z) and rearranging

the terms, we get

q∑
i=1

σi(Y )σi(Z)−
r∑
i=1

(
σi(Y )− 1

)
=

q∑
i=1

σi(Y )σi(Z)−
r∑
i=1

(
σi(Y )− 1

)
−

q∑
i=1

σi(Z) +

q∑
i=1

σi(Z)

=
r∑
i=1

(
σi(Y )− 1

)(
σi(Z)− 1

)
+

q∑
i=r+1

(
σi(Y )− 1

)(
σi(Z)

)
+

q∑
i=1

σi(Z))

<

q∑
i=1

σi(Z)

The last inequality holds because the first two terms of the third line always have a

negative value.

In summary we can conclude that:

φ??(Z) = ‖Z‖?

over the set
{
Z
∣∣∣‖Z‖ ≤ 1

}
. Thus over this set, ‖Z‖? is the convex envelope of the

function Rank(X).
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A.5 Solution of a nuclear-norm minimization prob-

lem

In [75], the adaptive nuclear norm of a matrix C∈Rp×q is defined as a weighted sum

of its singular values:

‖C‖?w =

min(p,q)∑
i=1

widi(C)

where, the wi are the non-negative weights.

Theorem A.2 For any λ > 0, 0 ≤ w1 ≤ w2, · · · ≤ wmin(p,q) and Y ∈Rn×q with a

singular value decomposition Y = UDV T , a global optimal solution of the optimization

problem

minimize
C

1

2
‖ Y − C‖2F + λ‖ C‖?w

is Sλw(Y ), where Sλw(Y ) = USλw(D)V T and

Sλw(D) = diag
[
{di(Y )− λwi}+, i = 1, 2, · · · ,min(n, q)

]
.

Proof: We first prove that Sλw(Y ) is indeed a global solution of of the above equation.

Assume, h = min(n, q). Let, g = {g}hi=1 = d(C), which implies the entries of g are

in non-decreasing order. Since the penalty term in the equation depends only on the

singular values of C, then the above minimization problem can be written as:

minimize
g:g1≥···≥gh≥0

{
minimize

C∈Rp×q,g=d(C)

(1

2
‖ Y − C‖2F + λ

h∑
i=1

wigi
)}

For the inner minimization, we have the inequality

‖Y − C‖2F = tr(Y Y T )− 2tr(Y CT ) + tr(CCT )

=
h∑
i=1

d2i (Y )− 2tr(Y CT ) +
h∑
i=1

g2i

≥
h∑
i=1

d2i (Y )− 2d(Y )Tg +
h∑
i=1

g2i



A.5 Solution of a nuclear-norm minimization problem 101

The last inequality due to von Neumann’s trace inequality in [76],[74]. The equality

holds when C admits the singular value decomposition C = Udiag(g)V T , where U

and V are the left and right singular matrices of Y . Then the optimization reduces

to:

minimize
g:g1≥···≥gh≥0

(
h∑
i=1

[1

2
g2i − {di(Y )− λwi}gi +

1

2
d2i (Y )

])
The objective function is completely separable and minimized only when

gi = {di(Y ) − λwi}+. Therefore, Sλw(Y ) = Udiag
[
{d(Y ) − λw}+

]
V T is a global

optimal solution.
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